收藏 分销(赏)

初二上学期压轴题强化数学试卷带解析(一)[002].doc

上传人:天**** 文档编号:1749768 上传时间:2024-05-08 格式:DOC 页数:21 大小:591.54KB
下载 相关 举报
初二上学期压轴题强化数学试卷带解析(一)[002].doc_第1页
第1页 / 共21页
初二上学期压轴题强化数学试卷带解析(一)[002].doc_第2页
第2页 / 共21页
初二上学期压轴题强化数学试卷带解析(一)[002].doc_第3页
第3页 / 共21页
初二上学期压轴题强化数学试卷带解析(一)[002].doc_第4页
第4页 / 共21页
初二上学期压轴题强化数学试卷带解析(一)[002].doc_第5页
第5页 / 共21页
点击查看更多>>
资源描述

1、初二上学期压轴题强化数学试卷带解析(一)1如图,在等边ABC中,点D、E分别是AB、AC上的点,BD=AE,BE与CD交于点O(1)填空:BOC 度;(2)如图,以CO为边作等边OCF,AF与BO相等吗?并说明理由;(3)如图,若点G是BC的中点,连接AO、GO,判断AO与GO有什么数量关系?并说明理由2已知:AD为ABC的中线,分别以AB和AC为一边在ABC的外部作等腰三角形ABE和等腰三角形ACF,且AEAB,AFAC,连接EF,EAF+BAC180(1)如图1,若ABE65,ACF75,求BAC的度数(2)如图1,求证:EF2AD(3)如图2,设EF交AB于点G,交AC于点R,FC与EB

2、交于点M,若点G为EF中点,且BAE60,请探究GAF和CAF的数量关系,并证明你的结论3如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(0,a),点B(b,0),且a、b满足a2-4a+4+0(1)求a,b的值;(2)以AB为边作RtABC,点C在直线AB的右侧,且ACB45,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与 x轴交于点D,BC与y轴交于点E,连接 DE,过点C作CFBC交x轴于点F求证:CF=BC;直接写出点C到DE的距离4在平面直角坐标系中,点A在x轴的负半轴上,点B在y轴的正半轴上,点A与点C关于y轴对称(1)如图1,OA=OB,AF平分BAC

3、交BC于F,BEAF交AC于E,请直接写出EF与EC的数量关系为 ;(2)如图2,AF平分BAC交BC于F,若AF=2OB,求ABC的度数;(3)如图3,OA=OB,点G在BO的垂直平分线上,作GOH=45交BA的延长线于H,连接GH,试探究OG与GH的数量和位置关系5如图,在ABC中,点D为直线BC上一动点,DAE90,ADAE(1)如果BAC90,ABAC如图1,当点D在线段BC上时,线段CE与BD的位置关系为_,数量关系为_;如图2,当点D在线段BC的延长线上时,中的结论是否仍然成立?请说明理由;(2)如图3,若ABC是锐角三角形,ACB=45,当点D在线段BC上运动时,证明:CEBD6

4、如图,在等边中,分别为,边上的点,(1)如图1,若点在边上,求证:;(2)如图2,连若,求证:;(3)如图3,是的中点,点在内,点,分别在,上,若,直接写出的度数(用含有的式子表示)7ABC、DPC都是等边三角形(1)如图1,求证:APBD;(2)如图2,点P在ABC内,M为AC的中点,连PM、PA、PB,若PAPM,且PB2PM求证:BPBD;判断PC与PA的数量关系并证明8背景角的平分线是常见的几何模型,利用轴对称构造三角形全等可解决有关问题问题在四边形ABDE中,C是BD边的中点(1)如图1,若AC平分BAE,ACE90,则线段AE、AB、DE的长度满足的数量关系为_;(直接写出答案)(

5、2)如图2,AC平分BAE,EC平分AED,若ACE120,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明;(3)如图3,若ACE120,AB4,DE9,BD12,则AE的最大值是_(直接写出答案)【参考答案】2(1)120;(2)相等,理由见解析;(3)AO=2OG理由见解析【分析】(1)证明EABDBC(SAS),可得结论(2)结论:AF=BO,证明FCAOCB(SAS),可得结解析:(1)120;(2)相等,理由见解析;(3)AO=2OG理由见解析【分析】(1)证明EABDBC(SAS),可得结论(2)结论:AF=BO,证明FCAOCB(SAS),可得结论(3)证明

6、AFOOBR(SAS),推出OA=OR,可得结论【详解】解:(1)如图中,ABC是等边三角形,AB=BC,A=CBD=60,在EAB和DBC中,EABDBC(SAS),ABE=BCD,BOD=BCD+CBE=ABE+CBE=CBA=60,BOC=180-60=120故答案为:120(2)相等理由:如图中,FCO,ACB都是等边三角形,CF=CO,CA=CB,FCO=ACB=60,FCA=OCB,在FCA和OCB中,FCAOCB(SAS),AF=BO(3)如图中,结论:AO=2OG理由:延长OG到R,使得GR=GO,连接CR,BR在CGO和BGR中,CGOBGR(SAS),CO=BR=OF,GC

7、O=GBR,AF=BO,COBR,FCAOCB,AFC=BOC=120,CFO=COF=60,AFO=COF=60,AFCO,AFBR,AFO=RBO,在AFO和OBR中,AFOOBR(SAS),OA=OR,OR=2OG,OA=2OG【点睛】本题属于三角形综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题3(1)BAC50(2)见解析(3)GAFCAF60,理由见解析【分析】(1)利用三角形的内角和定理求出EAB,CAF,再根据EAF+BAC180构建方程即可解解析:(1)BAC50(2)见解析(3)GAFCAF60,理由见解析

8、【分析】(1)利用三角形的内角和定理求出EAB,CAF,再根据EAF+BAC180构建方程即可解决问题;(2)延长AD至H,使DHAD,连接BH,想办法证明ABHEAF即可解决问题;(3)结论:GAFCAF60想办法证明ACDFAG,推出ACDFAG,再证明BCF150即可(1)解:AEAB,AEBABE65,EAB50,ACAF,ACFAFC75,CAF30,EAF+BAC180,EAB+2ABC+FAC180,50+2BAC+30180,BAC50(2)证明:证明:如图,延长AD至点H,使DH=AD,连接BHAD是ABC的中线,BD=DC,又DH=AD,BDH=ADCADCHDB(SAS)

9、,BH=AC,BHD=DAC,BH=AF,BHD=DAC,BHAC,BAC+ABH=180,又EAF+BAC=180,ABH=EAF,又AB=AE,BH=AF,AEFBAH(SAS),EF=AH=2AD,EF2AD;(3)结论:GAFCAF60理由:由(2)得,ADEF,又点G为EF中点,EGAD,由(2)AEFBAH,AEG=BAD,在EAG和ABD中,EAGABD,EAGABC60,AG=BD,AEB是等边三角形,AG=CD,ABE60,CBM60,在ACD和FAG中,ACDFAG,ACDFAG,ACAF,ACFAFC,在四边形ABCF中,ABC+BCF+CFA+BAF360,60+2BC

10、F360,BCF150,BCA+ACF150,GAF+(180CAF)150,GAFCAF60【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题4(1)a2,b-1;(2)满足条件的点C(2,1)或(1,-1);(3)证明见解析;1【分析】(1)可得(a2)2+0,由非负数的性质可得出答案;(2)分两种情况:BAC=9解析:(1)a2,b-1;(2)满足条件的点C(2,1)或(1,-1);(3)证明见解析;1【分析】(1)可得(a2)2+0,由非负数的性质可得出答案;(2)分两种情况:BAC=90

11、或ABC=90,根据等腰直角三角形的性质及全等三角形的性质可求出点C的坐标;(3)如图3,过点C作CLy轴于点L,则CL=1=BO,根据AAS可证明BOECLE,得出BE=CE,根据ASA可证明ABEBCF,得出BE=CF,则结论得证;如图4,过点C作CKED于点K,过点C作CHDF于点H,根据SAS可证明CDECDF,可得BAE=CBF,由角平分线的性质可得CK=CH=1【详解】(1)a24a+4+0,(a2)2+0,(a-2)20,0,a-2=0,2b+2=0,a=2,b=-1;(2)由(1)知a=2,b=-1,A(0,2),B(-1,0),OA=2,OB=1,ABC是直角三角形,且ACB

12、=45,只有BAC=90或ABC=90,、当BAC=90时,如图1,ACB=ABC=45,AB=CB,过点C作CGOA于G,CAG+ACG=90,BAO+CAG=90,BAO=ACG,在AOB和BCP中, ,AOBCGA(AAS),CG=OA=2,AG=OB=1,OG=OA-AG=1,C(2,1),、当ABC=90时,如图2,同的方法得,C(1,-1);即:满足条件的点C(2,1)或(1,-1)(3)如图3,由(2)知点C(1,-1),过点C作CLy轴于点L,则CL=1=BO,在BOE和CLE中,BOECLE(AAS),BE=CE,ABC=90,BAO+BEA=90,BOE=90,CBF+BE

13、A=90,BAE=CBF,在ABE和BCF中,ABEBCF(ASA),BE=CF,CFBC;点C到DE的距离为1如图4,过点C作CKED于点K,过点C作CHDF于点H,由知BE=CF,BE=BC,CE=CF,ACB=45,BCF=90,ECD=DCF,DC=DC,CDECDF(SAS),BAE=CBF,CK=CH=1【点睛】此题考查三角形综合题,非负数的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,坐标与图形的性质,等腰三角形的性质,点到直线的距离,角平分线的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题5(1)EFEC(2)72(3)GHGO,GHGO【分析】(1)

14、如图1中,设AF交BE于点J首先证明AB=AE,再证明AEF=ABF=90,可得结论;(2)如图2中,取解析:(1)EFEC(2)72(3)GHGO,GHGO【分析】(1)如图1中,设AF交BE于点J首先证明AB=AE,再证明AEF=ABF=90,可得结论;(2)如图2中,取CF的中点T,连接OT由OA=OC,BOAC,推出BA=BC,推出BAC=BCA,ABO=CBO,设BAC=BCA=2,利用三角形内角和定理,构建方程求解即可;(3)结论:OG=GH,OGGH如图3中,连接GB,在BA上取一点H,使得GB=GH,连接OH,设AB交DG于点W,交OG于点K,连接OW证明GOH=GOH=45,

15、推出点H与点H重合,可得结论(1)解:(1)结论:EF=EC理由:如图1中,设AF交BE于点JAF平分BAC,BAF=CAF,BEAF,BAF+ABE=90,CAF+AEB=90,ABE=AEB,AB=AE,A,C关于y轴对称,OA=OC,OA=OB,OA=OB=OC,OAB=OBA=45,OCB=OBC=45,ABC=90,在ABF和AEF中,ABFAEF(SAS),AEF=ABF=90,CEF=90,ECF=EFC=45,EF=EC;(2)解:如图2中,取CF的中点T,连接OTAO=OC,FT=TC,OTAF,OT=AF,AF=2OB,OB=OT,OBT=OTB,OA=OC,BOAC,BA

16、=BC,BAC=BCA,ABO=CBO,设BAC=BCA=2,AF平分BAC,BAF=CAF=,OTAF,TOC=CAF=,OBT=OTB=TOC+TCO=3,OBC+OCB=90,5=90,=18,OBC=36,ABC=2OBC=72;(3)解:结论:OG=GH,OGGH理由:如图3中,连接GB,在BA上取一点H,使得GB=GH,连接OH,设AB交DG于点W,交OG于点K,连接OW设OGB=m,OGH=n,GD垂直平分线段OB,GB=GO,DGB=DGO=m,GB=GO=GH,GHO=(180-n)=90-n,GHB=(180-m-n)=90-m-n,KHO=GHO-GHB=90-n-(90

17、-m-n)=m,KHO=KGW,GKW=HKO,HOK=GWK,DGOA,GWK=OAB=45,COH=45,COH=45,COH=COH,点H与点H重合,OG=GH,GHO=GOH=45,OGH=90,GH=GO,GHGO【点睛】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,等腰三角形的性质等知识,第三个问题比较难,采用了同一法解决问题6(1)CEBD;CE=BD;结论仍成立,理由见解析;(2)证明见解析【分析】(1)根据BAD=CAE,BA=CA,AD=AE,运用“SAS”证明ABDACE,根据全等三角解析:(1)CEBD;CE=BD;结论仍成立,理由见解析;(2)证明见解

18、析【分析】(1)根据BAD=CAE,BA=CA,AD=AE,运用“SAS”证明ABDACE,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE、BD之间的关系;先根据“SAS”证明ABDACE,再根据全等三角形性质得出对应边相等,对应角相等,即可得到中的结论仍然成立;(2)先过点A作AGAC交BC于点G,画出符合要求的图形,再结合图形判定GADCAE,得出对应角相等,即可得出结论(1)BAD=90DAC,CAE=90DAC,BAD=CAE又 BA=CA,AD=AE,ABDACE(SAS),ACE=B=45,CE=BDACB=B=45,ECB=45+45=90,即 CEBD故答案为:

19、CEBD;CE=BD当点D在BC的延长线上时,的结论仍成立DAE=90,BAC=90,DAE=BAC,DAB=EAC,又AB=AC,AD=AE,DABEAC(SAS),CE=BD,ACE=ABDBAC=90,AB=AC,ABC=45,ACE=45,BCE=ACB+ACE=90,即 CEBD;(2)证明:过点A作AGAC交BC于点G,ACB=45,AGC=45,AC=AG,即ACG是等腰直角三角形,GAD+DAC=90=CAE+DAC,GAD=CAE,又DA=EA,GADCAE(SAS),ACE=AGD=45,BCE=ACB+ACE=90,即CEBD【点睛】此题为三角形综合题,主要考查了全等三角

20、形的判定与性质及等腰直角三角形的性质,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等,对应角相等进行求解7(1)见解析(2)见解析(3)【分析】(1)连接DF,根据“有一个角是60的等腰三角形是等边三角形”可判断DEF是等边三角形,则DF=EF,又ABC是等边三角形,根据三角形内角和可解析:(1)见解析(2)见解析(3)【分析】(1)连接DF,根据“有一个角是60的等腰三角形是等边三角形”可判断DEF是等边三角形,则DF=EF,又ABC是等边三角形,根据三角形内角和可得出,AFD=FEC,所以ADFCFE(AAS),则AD=CF;(2)过点F作JKAC交AB于点J,交BC于

21、点K,过点F作PIAB交AC于P,交BC于点I,连接DF,则BJK和CPI是等边三角形,BDEJFDKEF,所以DJ=BE=FK,因为ABPI,FKAC,所以四边形AJFP是平行四边形,则AJ=PF,易得CPI为等边三角形,由FCB=30可得CF平分PCI,则FI=FP,所以FP=AJ,FK=BE=DJ,FI=FK,所以AJ=DJ=BE,即AD=AJ+DJ=2BE;(3)延长MO到点G,使OG=OM,连接NG,BG,NM,作ACQ=ABN,且使CQ=BN,连接MQ,AQ,先得到BOGCOM(SAS),再得到ACQABN(SAS)和BNGCQM(SAS),所以NAM=MAQ=CAM+CAQ=CA

22、M+BAN,所以CAM+BAN=30,则CAM=,所以BAN=30-(1)证明:如图,连接,是等边三角形,是等边三角形,;(2)证明:如图,过点作交于点,交于点,过点作交于,交于点,连接,和是等边三角形,是等边三角形,由(1)中结论可知,四边形是平行四边形,为等边三角形,平分,是等边三角形,即;(3)如图,延长到点,使,连接,作,且使,连接,是等边三角形,又,【点睛】本题属于三角形的综合题,涉及全等三角形的性质与判定,等边三角形的性质与判定,等腰三角形三线合一等知识,类比思想及构造的思想进行分析,仿造(1)中的结论构造出全等三角形是解题关键8(1)证明过程见解析;(2)证明过程见解析;PC=2

23、PA,理由见解析【分析】(1)证明BCDACP(SAS),可得结论;(2)如图2中,延长PM到K,使得MK=PM,连接C解析:(1)证明过程见解析;(2)证明过程见解析;PC=2PA,理由见解析【分析】(1)证明BCDACP(SAS),可得结论;(2)如图2中,延长PM到K,使得MK=PM,连接CK证明AMPCMK(SAS),推出MP=MK,AP=CK,APM=K=90,再证明PDBPCK(SSS),可得结论;结论:PC=2PA想办法证明DPB=30,可得结论(1)证明:如图1中,ABC,CDP都是等边三角形,CB=CA,CD=CP,ACB=DCP=60,BCD=ACP,在BCD和ACP中,B

24、CDACP(SAS),BD=AP;(2)证明:如图2中,延长PM到K,使得MK=PM,连接CKAPPM,APM=90,在AMP和CMK中,AMPCMK(SAS),MP=MK,AP=CK,APM=K=90,同法可证BCDACP,BD=PA=CK,PB=2PM,PB=PK,PD=PC,PDBPCK(SSS),PBD=K=90,PBBD解:结论:PC=2PAPDBPCK,DPB=CPK,设DPB=CPK=x,则BDP=90-x,APC=CDB,90+x=60+90-x,x=30,DPB=30,PBD=90,PD=2BD,PC=PD,BD=PA,PC=2PA【点睛】本题属于三角形综合题,考查了全等三角

25、形的判定和性质,等边三角形的性质,直角三角形30角的性质等知识,解题的关键是学会添加常用辅助线,关注全等三角形解决问题9(1)AE=AB+DE(2)AE=AB+DE+BD(3)【分析】(1)在AE上取一点F,使AF=AB,及可以得出ACBACF,就可以得出BC=FC,ACB=ACF,就可以得出解析:(1)AE=AB+DE(2)AE=AB+DE+BD(3)【分析】(1)在AE上取一点F,使AF=AB,及可以得出ACBACF,就可以得出BC=FC,ACB=ACF,就可以得出CEFCED就可以得出结论;(3)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG可以求得CF=

26、CG,CFG是等边三角形,就有FG=CG=BD,进而得出结论;(3)作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG根据两点之间线段最短解决问题即可(1)AE=AB+DE;理由:在AE上取一点F,使AF=AB,AC平分BAE,BAC=FAC在ACB和ACF中,ACBACF(SAS),BC=FC,ACB=ACFC是BD边的中点BC=CD,CF=CDACE=90,ACB+DCE=90,ACF+ECF=90ECF=ECD在CEF和CED中,CEFCED(SAS),EF=EDAE=AF+EF,AE=AB+DE,故答案为:AE=AB+DE;(2)猜想:AE=AB+DE+BD

27、证明:在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CGC是BD边的中点,CB=CD=BDAC平分BAE,BAC=FAC在ACB和ACF中, ACBACF(SAS),CF=CB,BCA=FCA同理可证:CD=CG,DCE=GCECB=CD,CG=CFACE=120,BCA+DCE=180-120=60FCA+GCE=60FCG=60FGC是等边三角形FG=FC=BDAE=AF+EG+FGAE=AB+DE+BD(3)作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG,如图所示:C是BD边的中点,CB=CD=BD=,ACBACF(SAS),CF=CB=,BCA=FCA,同理可证:CD=CG=,DCE=GCE,CB=CD,CG=CF,ACE=120,BCA+DCE=180-120=60,FCA+GCE=60,FCG=60,FGC是等边三角形,FC=CG=FG=,AEAF+FG+EG,当A、F、G、E共线时AE的值最大,最大值为故答案为:【点睛】本题考查了四边形的综合题,角平分线的性质的运用,全等三角形的判定及性质的运用,等边三角形的性质的运用,勾股定理的运用,解答时证明三角形全等是关键

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服