资源描述
人教版初二上学期压轴题强化数学试卷
1.如图,已知CD是线段AB的垂直平分线,垂足为D,C在D点上方,∠BAC=30°,P是直线CD上一动点,E是射线AC上除A点外的一点,PB=PE,连BE.
(1)如图1,若点P与点C重合,求∠ABE的度数;
(2)如图2,若P在C点上方,求证:PD+AC=CE;
(3)若AC=6,CE=2,则PD的值为 (直接写出结果).
2.如图1,在平面直角坐标系中,点,,且,满足,连接,,交轴于点.
(1)求点的坐标;
(2)求证:;
(3)如图2,点在线段上,作轴于点,交于点,若,求证:.
3.(1)模型:如图1,在中,平分,,,求证:.
(2)模型应用:如图2,平分交的延长线于点,求证:.
(3)类比应用:如图3,平分,,,求证:.
4.在平面直角坐标系中,,点在第一象限,,
(1)如图,求点的坐标.
(2)如图,作的角平分线,交于点,过点作于点,求证:
(3)若点在第二象限,且为等腰直角三角形,请直接写出所有满足条件的点的坐标.
5.如图,△ABC 中,AB=AC=BC,∠BDC=120°且BD=DC,现以D为顶点作一个60°角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明.
(1)如图1,若∠MDN的两边分别交AB,AC边于M,N两点.猜想:BM+NC=MN.延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证.请你按照该思路写出完整的证明过程;
(2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明).
6.如图,△ABC是等边三角形,点D、E分别是射线AB、射线CB上的动点,点D从点A出发沿射线AB移动,点E从点B出发沿BG移动,点D、点E同时出发并且运动速度相同.连接CD、DE.
(1)如图①,当点D移动到线段AB的中点时,求证:DE=DC.
(2)如图②,当点D在线段AB上移动但不是中点时,试探索DE与DC之间的数量关系,并说明理由.
(3)如图③,当点D移动到线段AB的延长线上,并且ED⊥DC时,求∠DEC度数.
7.在平面直角坐标系中,直线AB分别交x轴,y轴于A(a,0),B(0,b),且满足a2+b2+4a﹣8b+20=0.
(1)求a,b的值;
(2)点P在直线AB的右侧;且∠APB=45°,
①若点P在x轴上(图1),则点P的坐标为 ;
②若△ABP为直角三角形,求P点的坐标.
8.在等腰三角形ABC中,AB=AC,点D是AC上一动点,在BD的延长线上取一点E满足:AE=AB;AF平分∠CAE交BE于点F.
(1)如图1,连CF,求证:△ACF≌△AEF.
(2)如图2,当∠ABC=60°时,线段AF,EF,BF之间存在某种数量关系,写出你的结论并加以证明.
(3)如图3,当∠ACB=45°时,且AE∥BC,若EF=3,请直接写出线段BD的长是 (只填写结果).
【参考答案】
2.(1)∠ABE=90°;(2)PD+AC=CE,见解析;(3)1
【分析】(1)根据线段垂直平分线的性质和等边三角形的判定与性质得到:△BPE为等边三角形,则∠CBE=60°,故∠ABE=90°;
解析:(1)∠ABE=90°;(2)PD+AC=CE,见解析;(3)1
【分析】(1)根据线段垂直平分线的性质和等边三角形的判定与性质得到:△BPE为等边三角形,则∠CBE=60°,故∠ABE=90°;
(2)如图2,过P作PH⊥AE于H,连BC,作PG⊥BC交BC的延长线于G,构造含30度角的直角△PCG、直角△CPH以及全等三角形(Rt△PGB≌Rt△PHE),根据含30度的直角三角形的性质和全等三角形的对应边相等证得结论;
(3)分三种情况讨论,根据(2)的解题思路得到PD=AC+CE或PD=CE-AC,将数值代入求解即可.
【详解】(1)解:如图1,∵点P与点C重合,CD是线段AB的垂直平分线,
∴PA=PB,
∴∠PAB=∠PBA=30°,
∴∠BPE=∠PAB+∠PBA=60°,
∵PB=PE,
∴△BPE为等边三角形,
∴∠CBE=60°,
∴∠ABE=90°;
(2)如图2,过P作PH⊥AE于H,连BC,作PG⊥BC交BC的延长线于G,
∵CD垂直平分AB,
∴CA=CB,
∵∠BAC=30°,
∴∠ACD=∠BCD=60°,
∴∠GCP=∠HCP=∠BCE=∠ACD=∠BCD=60°,
∴∠GPC=∠HPC=30°,
∴PG=PH,CG=CH=CP,CD=AC,
在Rt△PGB和Rt△PHE中,
,
∴Rt△PGB≌Rt△PHE(HL).
∴BG=EH,即CB+CG=CE-CH,
∴CB+CP=CE-CP,即CB+CP=CE,
又∵CB=AC,
∴CP=PD-CD=PD-AC,
∴PD+AC=CE;
(3)①当P在C点上方时,由(2)得:PD=CE-AC,
当AC=6,CE=2时,PD=2-3=-1,不符合题意;
②当P在线段CD上时,
如图3,过P作PH⊥AE于H,连BC,作PG⊥BC交BC于G,
此时Rt△PGB≌Rt△PHE(HL),
∴BG=EH,即CB-CG=CE+CH,
∴CB-CP=CE+CP,即CP=CB-CE,
又∵CB=AC,
∴PD=CD-CP=AC-CB+CE,
∴PD=CE-AC.
当AC=6,CE=2时,PD=2-3=-1,不符合题意;
③当P在D点下方时,如图4,
同理,PD=AC-CE,
当AC=6,CE=2时,PD=3-2=1.
故答案为:1.
【点睛】本题主要考查了三角形综合题,综合运用全等三角形的判定与性质,含30度角直角三角形的性质,等边三角形的判定与性质等知识点,难度较大,解题时,注意要分类讨论.
3.(1);(2)证明见解析;(3)证明见解析.
【分析】(1)由非负性可求a,b的值,即可求解;
(2)由“SAS”可证△ABP≌△BCQ,可得AB=BC,∠BAP=∠CBQ,可证△ABC是等腰直
解析:(1);(2)证明见解析;(3)证明见解析.
【分析】(1)由非负性可求a,b的值,即可求解;
(2)由“SAS”可证△ABP≌△BCQ,可得AB=BC,∠BAP=∠CBQ,可证△ABC是等腰直角三角形,可得∠BAC=45°,可得结论;
(3)由“AAS”可证△ATO≌△EAG,可得AT=AE,OT=AG,由“SAS”可证△TAD≌△EAD,可得TD=ED,∠TDA=∠EDA,由平行线的性质可得∠EFD=∠EDF,可得EF=ED,即可得结论.
【详解】解:(1)∵a2-2ab+2b2-16b+64=0,
∴(a-b)2+(b-8)2=0,
∴a=b=8,
∴b-6=2,
∴点C(2,-8);
(2)∵a=b=8,
∴点A(0,6),点B(8,0),点C(2,-8),
∴AO=6,OB=8,
如图1,过点B作PQ⊥x轴,过点A作AP⊥PQ,交PQ于点P,过点C作CQ⊥PQ,交PQ于点Q,
∴四边形AOBP是矩形,
∴AO=BP=6,AP=OB=8,
∵点B(8,0),点C(2-8),
∴CQ=6,BQ=8,
∴AP=BQ,CQ=BP,
又∠APB=∠BCQ
∴△ABP≌△BCQ(SAS),
∴AB=BC,∠BAP=∠CBQ,
∵∠BAP+∠ABP=90°,
∴∠ABP+∠CBQ=90°,
∴∠ABC=90°,
∴△ABC是等腰直角三角形,
∴∠BAC=45°,
∵∠OAD+∠ADO=∠OAD+∠BAC+∠ABO=90°,
∴∠OAC+∠ABO=45°;
(3)如图2,过点A作AT⊥AB,交x轴于T,连接ED,
∴∠TAE=90°=∠AGE,
∴∠ATO+∠TAO=90°=∠TAO+∠GAE=∠GAE+∠AEG,
∴∠ATO=∠GAE,∠TAO=∠AEG,
又∵EG=AO,
∴△ATO≌△EAG(AAS),
∴AT=AE,OT=AG,
∵∠BAC=45°,
∴∠TAD=∠EAD=45°,
又∵AD=AD,
∴△TAD≌△EAD(SAS),
∴TD=ED,∠TDA=∠EDA,
∵EG⊥AG,
∴EG∥OB,
∴∠EFD=∠TDA,
∴∠EFD=∠EDF,
∴EF=ED,
∴EF=ED=TD=OT+OD=AG+OD,
∴EF=AG+OD.
【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.
4.(1)证明见解析;(2)证明见解析;(3)证明见解析;
【分析】(1)由题意得DE=DF,,,即可得出:=AB:AC;
(2)在AB上取点E,使得AE=AC,根据题意可证△ACD≌△AED,从而
解析:(1)证明见解析;(2)证明见解析;(3)证明见解析;
【分析】(1)由题意得DE=DF,,,即可得出:=AB:AC;
(2)在AB上取点E,使得AE=AC,根据题意可证△ACD≌△AED,从而可求出,,即可求解;
(3)延长BE至M,使EM=DC,连接AM,根据题意可证△ADC≌△AEM,故而得出AE为∠BAM的角平分线,即,即可得出答案;
【详解】解:(1)∵AD平分∠BAC,DE⊥AB,DE⊥AC,
∴DE=DF,
∵ ,,
∴:=AB:AC;
(2)如图,在AB上取点E,使得AE=AC,连接DE
又∵ AD平分∠CAE,
∴ ∠CAD=∠DAE,
在△ACD和△AED中,
,
∴△ACD≌△AED(SAS),
∴CD=DE且∠ADC=∠ADE,
∴ ,
∴ ,
∴AB:AC=BD:CD;
(3)如图延长BE至M,使EM=DC,连接AM,
∵ ∠D+∠AEB=180°,
又∵∠AEB+∠AEM=180°,
∴∠D=∠AEM,
在△ADC与△AEM中,
,
∴△ADC≌△AEM(SAS),
∴∠DAC=∠EAM=∠BAE,AC=AM,
∴AE为∠BAM的角平分线,
故 ,
∴BE:CD=AB:AC;
【点睛】本题考查了全等三角形的判定与性质、角平分线的性质、以及三角形的面积的应用,正确掌握知识点是解题的关键;
5.(1)C;(2)见解析;(3)或或
【分析】(1)作垂足为,证明,求出CM和OM的长,即可得到点C坐标;
(2)延长相交于点,先证明,得BD=CF,再证明,得CE=EF,即可证明结论;
(3)
解析:(1)C;(2)见解析;(3)或或
【分析】(1)作垂足为,证明,求出CM和OM的长,即可得到点C坐标;
(2)延长相交于点,先证明,得BD=CF,再证明,得CE=EF,即可证明结论;
(3)分情况讨论,画出对应的等腰直角三角形的图象,做辅助线构造全等三角形,求出点P坐标.
【详解】解:如图中,作垂足为,
,
,,
在和中,
,
点坐标;
如图,延长相交于点,
,
在和中,
,
,
,
在和中,
,
,
;
(3)①如图,,,过点P作轴于点D,
在和中,
,
∴,
∴,,
∴,
∴;
②如图,,,过点P作轴于点D,
在和中,
,
∴,
∴,,
∴,
∴;
③如图,,,过点P作轴于点E,过点A作于点D,
∵,,
∴,
在和中,
,
∴,
设,,
∵,,
∴,解得,
∴,,
∴;
综上:点P的坐标是或或.
【点睛】本题考查坐标和几何综合题,解题的关键是掌握作辅助线构造全等三角形的方法,利用全等三角形的性质求解点坐标,掌握数形结合的思想.
6.(1)过程见解析;(2)MN= NC﹣BM.
【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠B
解析:(1)过程见解析;(2)MN= NC﹣BM.
【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠BDM=∠CDE,再根据∠MDN =60°,∠BDC=120°,可证∠MDN =∠NDE=60°,得出△DMN≌△DEN,进而得到MN=BM+NC.
(2)在CA上截取CE=BM,利用(1)中的证明方法,先证△BMD≌△CED(SAS),再证△MDN≌△EDN(SAS),即可得出结论.
【详解】解:(1)如图示,延长AC至E,使得CE=BM,并连接DE.
∵△BDC为等腰三角形,△ABC为等边三角形,
∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,
又BD=DC,且∠BDC=120°,
∴∠DBC=∠DCB=30°
∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,
∴∠MBD=∠ECD=90°,
在△MBD与△ECD中,
∵ ,
∴△MBD≌△ECD(SAS),
∴MD=DE,∠BDM=∠CDE
∵∠MDN =60°,∠BDC=120°,
∴∠CDE+∠NDC =∠BDM+∠NDC=120°-60°=60°,
即:∠MDN =∠NDE=60°,
在△DMN与△DEN中,
∵ ,
∴△DMN≌△DEN(SAS),
∴MN=NE=CE+NC=BM+NC.
(2)如图②中,结论:MN=NC﹣BM.
理由:在CA上截取CE=BM.
∵△ABC是正三角形,
∴∠ACB=∠ABC=60°,
又∵BD=CD,∠BDC=120°,
∴∠BCD=∠CBD=30°,
∴∠MBD=∠DCE=90°,
在△BMD和△CED中
∵ ,
∴△BMD≌△CED(SAS),
∴DM= DE,∠BDM=∠CDE
∵∠MDN =60°,∠BDC=120°,
∴∠NDE=∠BDC-(∠BDN+∠CDE)=∠BDC-(∠BDN+∠BDM)=∠BDC-∠MDN=120°-60°=60°,
即:∠MDN =∠NDE=60°,
在△MDN和△EDN中
∵ ,
∴△MDN≌△EDN(SAS),
∴MN =NE=NC﹣CE=NC﹣BM.
【点睛】此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
7.(1)见详解;
(2)DE=DC,理由见详解;
(3)∠DEC=45°
【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证
(2)猜测,寻找条件证明即可.最常用
解析:(1)见详解;
(2)DE=DC,理由见详解;
(3)∠DEC=45°
【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证
(2)猜测,寻找条件证明即可.最常用的是证明两个三角形全等,但图中给出的三角形中并未出现全等三角形,所以添加辅助线:在射线AB上截取,这样只要证明即可.利用等边三角形的性质及可知为等边三角形,这样通过两个等边三角形即可证明.
(3)按照第(2)问的思路,作出类似的辅助线:在射线CB上截取,用同样的方法证明,又因为ED⊥DC,所以为等腰之间三角形,则∠DEC度数可求.
【详解】由题意可知
∵D为AB的中点
∵为等边三角形,
(2)
理由如下:
在射线AB上截取,连接EF
∵为等边三角形
∴为等边三角形
由题意知
即
在和中,
(3)如图,在射线CB上截取,连接DF
∵为等边三角形
∴为等边三角形
由题意知
即
在和中,
∵ED⊥DC
∴为等腰直角三角形
【点睛】本题主要考查了等腰三角形,等边三角形,全等三角形的判定及性质,能够作出辅助线,并合理利用等边三角形的性质是解题的关键.
8.(1)a=﹣2,b=4;(2)①(4,0);②P点坐标为(4,2),(2,﹣2).
【分析】(1)利用非负数的性质解决问题即可.
(2)①根据等腰直角三角形的性质即可解决问题.
②分两种情形:
解析:(1)a=﹣2,b=4;(2)①(4,0);②P点坐标为(4,2),(2,﹣2).
【分析】(1)利用非负数的性质解决问题即可.
(2)①根据等腰直角三角形的性质即可解决问题.
②分两种情形:如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.分别利用全等三角形的性质解决问题即可.
【详解】(1)∵a2+4a+4+b2﹣8b+16=0
∴(a+2)2+(b﹣4)2=0
∴a=﹣2,b=4.
(2)①如图1中,
∵∠APB=45°,∠POB=90°,
∴OP=OB=4,
∴P(4,0).
故答案为(4,0).
②∵a=﹣2,b=4
∴OA=2OB=4
又∵△ABP为直角三角形,∠APB=45°
∴只有两种情况,∠ABP=90°或∠BAP=90°
①如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.
∴∠PCB=∠BOA=90°,
又∵∠APB=45°,
∴∠BAP=∠APB=45°,
∴BA=BP,
又∵∠ABO+∠OBP=∠OBP+∠BPC=90°,
∴∠ABO=∠BPC,
∴△ABO≌△BPC(AAS),
∴PC=OB=4,BC=OA=2,
∴OC=OB﹣BC=4﹣2=2,
∴P(4,2).
②如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.
∴∠PDA=∠AOB=90°,
又∵∠APB=45°,
∴∠ABP=∠APB=45°,
∴AP=AB,
又∵∠BAD+∠DAP=90°,
∠DPA+∠DAP=90°,
∴∠BAD=∠DPA,
∴△BAO≌△APP(AAS),
∴PD=OA=2,AD=OB=4,
∴OD=AD﹣0A=4﹣2=2,
∴P(2,﹣2).
综上述,P点坐标为(4,2),(2,﹣2).
【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.
9.(1)证明见解析
(2),证明见解析
(3)6
【分析】(1)由角平分线的定义可知,再根据等量代换得出AC =AE,由此可直接利用“SAS”证明;
(2)在BE上截取BM=CF,连接AM.由
解析:(1)证明见解析
(2),证明见解析
(3)6
【分析】(1)由角平分线的定义可知,再根据等量代换得出AC =AE,由此可直接利用“SAS”证明;
(2)在BE上截取BM=CF,连接AM.由所作辅助线易证,得出,.由题意易判断为等边三角形,即可求出,即说明为等边三角形,得出,由此即得出;
(3)延长BA,CF交于点N.由题意可知为等腰直角三角形,即,.根据平行线的性质和等边对等角即得出BE为的角平分线,从而可求出,进而可求出.由角平分线的性质可得出,从而可求出.又易证,即得出.
(1)
∵AF平分∠CAE,
∴.
∵AB=AC,AB=AE,
∴AC =AE.
又∵AF=AF,
∴.
(2)
证明:∵,
∴,.
如图,在BE上截取BM=CF,连接AM.
在和中,,
∴,
∴,.
∵,,
∴为等边三角形,
∴.
∵,
∴,即,
∴为等边三角形,
∴,
∴.
即AF,EF,BF之间存在的关系为:;
(3)
如图,延长BA,CF交于点N.
∵,,
∴为等腰直角三角形,
∴,.
∵AE∥BC,
∴.
∵,
∴,
∴.
由(1)可知,
∴,
∴,即.
∵为的角平分线,
∴.
∵,
∴,即.
在和中,,
∴,
∴.
故答案为:6.
【点睛】本题为三角形综合题,考查等边三角形的判定和性质,等腰直角三角形的判定和性质,三角形全等的判定和性质,角平分线的定义和性质,平行线的性质以及三角形内角和定理,综合性强,较难.解题关键是学会添加常用的辅助线,构造全等三角形解决问题.
展开阅读全文