资源描述
初二上学期压轴题强化数学试卷答案
1.在平面直角坐标系中,A(a,0),B(0,b)分别是x轴负半轴和y轴正半轴上一点,点C与点A关于y轴对称,点P是x轴正半轴上C点右侧一动点.
(1)当2a2+4ab+4b2+2a+1=0时,求A,B的坐标;
(2)当a+b=0时,
①如图1,若D与P关于y轴对称,PE⊥DB并交DB延长线于E,交AB的延长线于F,求证:PB=PF;
②如图2,把射线BP绕点B顺时针旋转45o,交x轴于点Q,当CP=AQ时,求∠APB的大小.
2.(1)模型:如图1,在中,平分,,,求证:.
(2)模型应用:如图2,平分交的延长线于点,求证:.
(3)类比应用:如图3,平分,,,求证:.
3.如图,在平面直角坐标系中,A(a,0),B(0,b),且|a+4|+b2﹣86+16=0.
(1)求a,b的值;
(2)如图1,c为y轴负半轴上一点,连CA,过点C作CD⊥CA,使CD=CA,连BD.求证:∠CBD=45°;
(3)如图2,若有一等腰Rt△BMN,∠BMN=90°,连AN,取AN中点P,连PM、PO.试探究PM和PO的关系.
4.等腰Rt△ABC中,∠BAC=90°,AB=AC,点A、点B分别是y轴、x轴上两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E.
(1)如图(1),已知C点的横坐标为-1,直接写出点A的坐标;
(2)如图(2),当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE.求证:∠ADB=∠CDE;
(3)如图(3),若点A在x轴上,且A(-4,0),点B在y轴的正半轴上运动时,分别以OB、AB为直角边在第一、二象限作等腰直角△BOD和等腰直角△ABC,连结CD交,轴于点P,问当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请求出BP的长度.
5.如图,在△ABC中,点D为直线BC上一动点,∠DAE=90°,AD=AE.
(1)如果∠BAC=90°,AB=AC.
①如图1,当点D在线段BC上时,线段CE与BD的位置关系为__________,数量关系为__________;
②如图2,当点D在线段BC的延长线上时,①中的结论是否仍然成立?请说明理由;
(2)如图3,若△ABC是锐角三角形,∠ACB=45°,当点D在线段BC上运动时,证明:CE⊥BD.
6.若整式A只含有字母x,且A的次数不超过3次,令,其中a,b,c,d为整数,在平面直角坐标系中,我们定义:M为整式A的关联点,我们规定次数超过3次的整式没有关联点.例如,若整式,则a=0,b=2,c=-5,d=4,故A的关联点为(-5,-11).
(1)若,试求出A的关联点坐标;
(2)若整式B是只含有字母x的整式,整式C是B与的乘积,若整式C的关联点为(6,15),求整式B的表达式.
(3)若整式D=x-2,整式E是只含有字母x的一次多项式,整式F是整式D与整式E的平方的乘积,若整式F的关联点为(-32,0),请直接写出整式E的表达式.
7.[背景]角的平分线是常见的几何模型,利用轴对称构造三角形全等可解决有关问题.
[问题]在四边形ABDE中,C是BD边的中点.
(1)如图1,若AC平分∠BAE,∠ACE=90°,则线段AE、AB、DE的长度满足的数量关系为______;(直接写出答案)
(2)如图2,AC平分∠BAE,EC平分∠AED,若∠ACE=120°,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明;
(3)如图3,若∠ACE=120°,AB=4,DE=9,BD=12,则AE的最大值是______.(直接写出答案)
8.已知:为的中线,分别以和为一边在的外部作等腰三角形和等腰三角形,且,连接,.
(1)如图1,若,求的度数.
(2)如图1,求证:.
(3)如图2,设交于点,交于点与交于点,若点为中点,且,请探究和的数量关系,并直接写出答案(不需要证明).
【参考答案】
2.(1);(2)①见解析;②∠APB=22.5°
【分析】(1)利用非负数的性质求解即可;
(2)①想办法证明∠PBF=∠F,可得结论;②如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴
解析:(1);(2)①见解析;②∠APB=22.5°
【分析】(1)利用非负数的性质求解即可;
(2)①想办法证明∠PBF=∠F,可得结论;②如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴于H,可得等腰直角△BQF,证明△FQH≌△QBO(AAS),再证明FQ=FP即可解决问题.
【详解】解:(1)∵2a2+4ab+4b2+2a+1=0,
∴(a+2b)2+(a+1)2=0,
∵(a+2b)2≥0 ,(a+1)2≥0,
∴a+2b=0,a+1=0,
∴a=﹣1,b=,
∴A(﹣1,0),B(0,).
(2)①证明:如图1中,
∵a+b=0,
∴a=﹣b,
∴OA=OB,
又∵∠AOB=90°,
∴∠BAO=∠ABO=45°,
∵D与P关于y轴对称,
∴BD=BP,
∴∠BDP=∠BPD,
设∠BDP=∠BPD=α,
则∠PBF=∠BAP+∠BPA=45°+α,
∵PE⊥DB,
∴∠BEF=90°,
∴∠F=90°﹣∠EBF,
又∠EBF=∠ABD=∠BAO﹣∠BDP=45°﹣α,
∴∠F=45°+α,
∴∠PBF=∠F,
∴PB=PF.
②解:如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴于H.可得等腰直角△BQF,
∵∠BOQ=∠BQF=∠FHQ=90°,
∴∠BQO+∠FQH=90°,∠FQH+∠QFH=90°,
∴∠BQO=∠QFH,
∵QB=QF,
∴△FQH≌△QBO(AAS),
∴HQ=OB=OA,
∴HO=AQ=PC,
∴PH=OC=OB=QH,
∴FQ=FP,
又∠BFQ=45°,
∴∠APB=22.5°.
【点睛】本题考查完全平方公式、实数的非负性、全等三角形的判定与性质、等腰直角三角形的判定与性质,解题的关键是综合运用相关知识解题.
3.(1)证明见解析;(2)证明见解析;(3)证明见解析;
【分析】(1)由题意得DE=DF,,,即可得出:=AB:AC;
(2)在AB上取点E,使得AE=AC,根据题意可证△ACD≌△AED,从而
解析:(1)证明见解析;(2)证明见解析;(3)证明见解析;
【分析】(1)由题意得DE=DF,,,即可得出:=AB:AC;
(2)在AB上取点E,使得AE=AC,根据题意可证△ACD≌△AED,从而可求出,,即可求解;
(3)延长BE至M,使EM=DC,连接AM,根据题意可证△ADC≌△AEM,故而得出AE为∠BAM的角平分线,即,即可得出答案;
【详解】解:(1)∵AD平分∠BAC,DE⊥AB,DE⊥AC,
∴DE=DF,
∵ ,,
∴:=AB:AC;
(2)如图,在AB上取点E,使得AE=AC,连接DE
又∵ AD平分∠CAE,
∴ ∠CAD=∠DAE,
在△ACD和△AED中,
,
∴△ACD≌△AED(SAS),
∴CD=DE且∠ADC=∠ADE,
∴ ,
∴ ,
∴AB:AC=BD:CD;
(3)如图延长BE至M,使EM=DC,连接AM,
∵ ∠D+∠AEB=180°,
又∵∠AEB+∠AEM=180°,
∴∠D=∠AEM,
在△ADC与△AEM中,
,
∴△ADC≌△AEM(SAS),
∴∠DAC=∠EAM=∠BAE,AC=AM,
∴AE为∠BAM的角平分线,
故 ,
∴BE:CD=AB:AC;
【点睛】本题考查了全等三角形的判定与性质、角平分线的性质、以及三角形的面积的应用,正确掌握知识点是解题的关键;
4.(1)a=﹣4,b=4;(2)见解析;(3)MP=OP,MP⊥OP,理由见解析
【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可
解析:(1)a=﹣4,b=4;(2)见解析;(3)MP=OP,MP⊥OP,理由见解析
【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可;
(2)如图1(见解析),作于E.易证,由三角形全等的性质得,再证明是等腰直角三角形即可;
(3)如图2(见解析),延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C.证出和,再利用全等三角形的性质证明是等腰直角三角形即可.
【详解】(1)
由绝对值的非负性和平方数的非负性得:
解得:;
(2)如图1,作于E
是等腰直角三角形,
;
(3)如图2,延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C
∴
∵在四边形MCOB中,
是等腰直角三角形
∴
是等腰直角三角形
.
【点睛】本题考查了绝对值的非负数和平方数的非负性、三角形全等的判定定理与性质、等腰直角三角形的判定与性质,熟练掌握这些定理与性质是解题关键.
5.(1)A(0,1);
(2)见解析;
(3)不变,BP= 2.
【分析】(1)如图(1),过点C作CF⊥y轴于点F,构建全等三角形:△ACF≌△ABO(AAS),结合该全等三角形的对应边相等易
解析:(1)A(0,1);
(2)见解析;
(3)不变,BP= 2.
【分析】(1)如图(1),过点C作CF⊥y轴于点F,构建全等三角形:△ACF≌△ABO(AAS),结合该全等三角形的对应边相等易得OA的长度,由点A是y轴上一点可以推知点A的坐标;
(2)过点C作CG⊥AC交y轴于点G,则△ACG≌△ABD(ASA),即得CG=AD=CD,∠ADB=∠G,由∠DCE=∠GCE=45°,可证△DCE≌△GCE(SAS)得∠CDE=∠G,从而得到结论;
(3)BP的长度不变,理由如下:如图(3),过点C作CE⊥y轴于点E,构建全等三角形:△CBE≌△BAO(AAS),结合全等三角形的对应边相等推知:CE=BO,BE=AO=4.再结合已知条件和全等三角形的判定定理AAS得到:△CPE≌△DPB,故BP=EP=2.
(1)如图(1),过点C作CF⊥y轴于点F,∵CF⊥y轴于点F,∴∠CFA=90°,∠ACF+∠CAF=90°,∵∠CAB=90°,∴∠CAF+∠BAO=90°,∴∠ACF=∠BAO,在△ACF和△ABO中,,∴△ACF≌△ABO(AAS),∴CF=OA=1,∴A(0,1);
(2)如图2,过点C作CG⊥AC交y轴于点G,∵CG⊥AC,∴∠ACG=90°,∠CAG+∠AGC=90°,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∴∠AGC=∠ADO,在△ACG和△ABD中,,∴△ACG≌△ABD(AAS),∴CG=AD=CD,∠ADB=∠G,∵∠ACB=45°,∠ACG=90°,∴∠DCE=∠GCE=45°,在△DCE和△GCE中,,∴△DCE≌△GCE(SAS),∴∠CDE=∠G,∴∠ADB=∠CDE;
(3)BP的长度不变,理由如下:如图(3),过点C作CE⊥y轴于点E.∵∠ABC=90°,∴∠CBE+∠ABO=90°.∵∠BAO+∠ABO=90°,∴∠CBE=∠BAO.∵∠CEB=∠AOB=90°,AB=AC,∴△CBE≌△BAO(AAS),∴CE=BO,BE=AO=4.∵BD=BO,∴CE=BD.∵∠CEP=∠DBP=90°,∠CPE=∠DPB,∴△CPE≌△DPB(AAS),∴BP=EP=2.
【点睛】本题考查了三角形综合题.主要利用了全等三角形的性质定理与判定定理,解决本题的关键是作出辅助线,构建全等三角形.
6.(1)①CE⊥BD;CE=BD;②结论仍成立,理由见解析;
(2)证明见解析.
【分析】(1)①根据∠BAD=∠CAE,BA=CA,AD=AE,运用“SAS”证明△ABD≌△ACE,根据全等三角
解析:(1)①CE⊥BD;CE=BD;②结论仍成立,理由见解析;
(2)证明见解析.
【分析】(1)①根据∠BAD=∠CAE,BA=CA,AD=AE,运用“SAS”证明△ABD≌△ACE,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE、BD之间的关系;
②先根据“SAS”证明△ABD≌△ACE,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;
(2)先过点A作AG⊥AC交BC于点G,画出符合要求的图形,再结合图形判定△GAD≌△CAE,得出对应角相等,即可得出结论.
(1)
①∵∠BAD=90°-∠DAC,∠CAE=90°-∠DAC,
∴∠BAD=∠CAE.
又 BA=CA,AD=AE,
∴△ABD≌△ACE(SAS),
∴∠ACE=∠B=45°,CE=BD.
∵∠ACB=∠B=45°,
∴∠ECB=45°+45°=90°,
即 CE⊥BD.
故答案为:CE⊥BD;CE=BD.
②当点D在BC的延长线上时,①的结论仍成立.
∵∠DAE=90°,∠BAC=90°,
∴∠DAE=∠BAC,
∴∠DAB=∠EAC,
又AB=AC,AD=AE,
∴△DAB≌△EAC(SAS),
∴CE=BD,∠ACE=∠ABD.
∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ACE=45°,
∴∠BCE=∠ACB+∠ACE=90°,
即 CE⊥BD;
(2)
证明:过点A作AG⊥AC交BC于点G,
∵∠ACB=45°,
∴∠AGC=45°,
∴AC=AG,
即△ACG是等腰直角三角形,
∵∠GAD+∠DAC=90°=∠CAE+∠DAC,
∴∠GAD=∠CAE,
又∵DA=EA,
∴△GAD≌△CAE(SAS),
∴∠ACE=∠AGD=45°,
∴∠BCE=∠ACB+∠ACE=90°,
即CE⊥BD.
【点睛】此题为三角形综合题,主要考查了全等三角形的判定与性质及等腰直角三角形的性质,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等,对应角相等进行求解.
7.(1)
(2)
(3)或
【分析】(1)根据整式得出,,,,根据关联点的定义得出,,即可得出的关联点坐标;
(2)根据题意得出中的次数为次,设 ,计算出,进而表达出,,,的值,再根据的关
解析:(1)
(2)
(3)或
【分析】(1)根据整式得出,,,,根据关联点的定义得出,,即可得出的关联点坐标;
(2)根据题意得出中的次数为次,设 ,计算出,进而表达出,,,的值,再根据的关联点为,列出关于 , 的等式,解出、的值即可;
(3)设,根据题意求出,进而表达出,,,的值,再根据的关联点为,列出关于,的等式,解出、的值即可.
(1)
解:(1),
,,,,
,,
的关联点坐标为:,
故笞案为:;
(2)
整式是只含有字母的整式,整式是与的乘积,
是二次多项式,且的次数不能超过次,
中的次数为次,
设 ,
,
,,,,
整式的关联点为,
,,
解得:,,
;
(3)
根据题意:设,
,
,,,,
整式 的关联点为,
,,
,,
,
把代入得: ,
解得: ,
或,
或.
【点睛】本题主要考查整式的乘法,掌握整式的乘法是解决问题的关键.
8.(1)AE=AB+DE
(2)AE=AB+DE+BD
(3)
【分析】(1)在AE上取一点F,使AF=AB,及可以得出△ACB≌△ACF,就可以得出BC=FC,∠ACB=∠ACF,就可以得出△
解析:(1)AE=AB+DE
(2)AE=AB+DE+BD
(3)
【分析】(1)在AE上取一点F,使AF=AB,及可以得出△ACB≌△ACF,就可以得出BC=FC,∠ACB=∠ACF,就可以得出△CEF≌△CED.就可以得出结论;
(3)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG.可以求得CF=CG,△CFG是等边三角形,就有FG=CG=BD,进而得出结论;
(3)作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG.根据两点之间线段最短解决问题即可.
(1)
AE=AB+DE;
理由:在AE上取一点F,使AF=AB,
∵AC平分∠BAE,
∴∠BAC=∠FAC.
在△ACB和△ACF中,
,
∴△ACB≌△ACF(SAS),
∴BC=FC,∠ACB=∠ACF.
∵C是BD边的中点.
∴BC=CD,
∴CF=CD.
∵∠ACE=90°,
∴∠ACB+∠DCE=90°,∠ACF+∠ECF=90°
∴∠ECF=∠ECD.
在△CEF和△CED中,
,
∴△CEF≌△CED(SAS),
∴EF=ED.
∵AE=AF+EF,
∴AE=AB+DE,
故答案为:AE=AB+DE;
(2)
猜想:AE=AB+DE+BD.
证明:在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG.
∵C是BD边的中点,
∴CB=CD=BD.
∵AC平分∠BAE,
∴∠BAC=∠FAC.
在△ACB和△ACF中,
∴△ACB≌△ACF(SAS),
∴CF=CB,
∴∠BCA=∠FCA.
同理可证:CD=CG,
∴∠DCE=∠GCE.
∵CB=CD,
∴CG=CF
∵∠ACE=120°,
∴∠BCA+∠DCE=180°-120°=60°.
∴∠FCA+∠GCE=60°.
∴∠FCG=60°.
∴△FGC是等边三角形.
∴FG=FC=BD.
∵AE=AF+EG+FG.
∴AE=AB+DE+BD.
(3)
作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG,如图所示:
∵C是BD边的中点,
∴CB=CD=BD=,
∵△ACB≌△ACF(SAS),
∴CF=CB=,
∴∠BCA=∠FCA,
同理可证:CD=CG=,
∴∠DCE=∠GCE,
∵CB=CD,
∴CG=CF,
∵∠ACE=120°,
∴∠BCA+∠DCE=180°-120°=60°,
∴∠FCA+∠GCE=60°,
∴∠FCG=60°,
∴△FGC是等边三角形,
∴FC=CG=FG=,
∵AE≤AF+FG+EG,
∴当A、F、G、E共线时AE的值最大,最大值为.
故答案为:.
【点睛】本题考查了四边形的综合题,角平分线的性质的运用,全等三角形的判定及性质的运用,等边三角形的性质的运用,勾股定理的运用,解答时证明三角形全等是关键.
9.(1)∠BAC=50°;
(2)见解析;
(3)
【分析】(1)利用三角形内角和定理求出∠EAB和∠CAF,再根据构建方程即可解决问题;
(2)延长AD至H,使DH=AD,连接BH,想办法证
解析:(1)∠BAC=50°;
(2)见解析;
(3)
【分析】(1)利用三角形内角和定理求出∠EAB和∠CAF,再根据构建方程即可解决问题;
(2)延长AD至H,使DH=AD,连接BH,想办法证明△ABH≌△EAF即可解决问题;
(3)先证明△ACD≌△FAG,推出∠ACD=∠FAG,再证明∠BCF=150°即可.
(1)
∵AE=AB,
∴∠AEB=∠ABE=65°,
∴∠EAB=50°,
∵AC=AF,
∴∠ACF=∠AFC=75°,
∴∠CAF=30°,
∵∠EAF+∠BAC=180°,
∴∠EAB+2∠ABC+∠FAC=180°,
∴50°+2∠BAC+30°=180°,
∴∠BAC=50°.
(2)
证明:延长AD至H,使DH=AD,连接BH,
∵EF=2AD,
∴AH=EF,
在△BDH和△CDA中,
,
∴△BDH≌△CDA,
∴HB=AC=AF,∠BHD=∠CAD,
∴AC∥BH,
∴∠ABH+∠BAC=180°,
∵∠EAF+∠BAC=180°,
∴∠EAF=∠ABH,
在△ABH和△EAF中,
,
∴△ABH≌△EAF,
∴∠AEF=∠ABH,EF=AH=2AD,
(3)
结论:∠GAF-∠CAF=60°.
由(1)得,AD=EF,又点G为EF中点,
∴EG=AD,
在△EAG和△ABD中,
,
∴△EAG≌△ABD,
∴∠EAG=∠ABC=60°,
∴△AEB是等边三角形,
∴∠ABE=60°,
∴∠CBM=60°,
在△ACD和△FAG中,
,
∴△ACD≌△FAG,
∴∠ACD=∠FAG,
∵AC=AF,∴∠ACF=∠AFC,
在四边形ABCF中,∠ABC+∠BCF+∠CFA+∠BAF=360°,
∴60°+2∠BCF=360°,
∴∠BCF=150°,
∴∠BCA+∠ACF=150°,
∴∠GAF+(180°-∠CAF)=150°,
∴∠GAF-∠CAF=60°.
.
【点睛】本题考查三角形综合题,涉及全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
展开阅读全文