资源描述
人教版初二上学期压轴题数学试卷含解析(一)
1.如图①,在等边△ABC中,点D、E分别是AB、AC上的点,BD=AE,BE与CD交于点O.
(1)填空:∠BOC= 度;
(2)如图②,以CO为边作等边△OCF,AF与BO相等吗?并说明理由;
(3)如图③,若点G是BC的中点,连接AO、GO,判断AO与GO有什么数量关系?并说明理由.
2.(初步探索)(1)如图:在四边形中,,,、分别是、上的点,且,探究图中、、之间的数量关系.
(1)(1)小明同学探究此问题的方法是:延长到点,使.连接,先证明,再证明,可得出结论,他的结论应是_____________;
(2)(灵活运用)(2)如图2,若在四边形中,,,、分别是、上的点,且,上述结论是否仍然成立,并说明理由;
3.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE =∠BAC,连接CE.
(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=________度;
(2)设,.
①如图2,当点在线段BC上移动,则,之间有怎样的数量关系?请说明理由;
②当点在直线BC上移动,则,之间有怎样的数量关系?请直接写出你的结论.
4.已知:,.
(1)当a,b满足时,连接AB,如图1.
①求:的值.
②点M为线段AB上的一点(点M不与A,B重合,其中BM>AM),以点M为直角顶点,OM为腰作等腰直角△MON,连接BN,求证:.
(2)当,,连接AB,若点,过点D作于点E,点B与点C关于x轴对称,点F是线段DE上的一点(点F不与点E,D重合)且满足,连接AF,试判断线段AC与AF之间的位置关系和数量关系,并证明你的结论.
5.如图①,直线AB与x轴负半轴、y轴正半轴分别交于A(a,0)、B(0,b)两点.
(1)若+b2-10b+25=0,判断△AOB的形状,并说明理由;
(2)如图②,在(1)的条件下,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=4,MN=7,求BN的长;
(3)如图③,若即点A不变,点B在y轴正半轴上运动,分别以OB、AB为直角边在第一、第二象限作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,问当点B在y轴上运动时,试猜想PB的长是否为定值,若是,请求出其值;若不是,请求其取值范围.
6.如图,和中,,,,边与边交于点(不与点,重合),点,在异侧,为与的角平分线的交点.
(1)求证:;
(2)设,请用含的式子表示,并求的最大值;
(3)当时,的取值范围为,求出,的值.
7.如图1,A(﹣2,6),C(6,2),AB⊥y轴于点B,CD⊥x轴于点D.
(1)求证:△AOB≌△COD;
(2)如图2,连接AC,BD交于点P,求证:点P为AC中点;
(3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EF.EF⊥CE且EF=CE,点G为AF中点.连接EG,EO,求证:∠OEG=45°.
8.问题引入:
(1)如图1,在中,点O是和平分线的交点,若,则______(用表示):如图2,,,,则______(用表示);
拓展研究:
(2)如图3,,,,猜想度数(用表示),并说明理由;
(3)BO、CO分别是的外角、的n等分线,它们交于点O,,,,请猜想______(直接写出答案).
【参考答案】
2.(1)120;(2)相等,理由见解析;(3)AO=2OG.理由见解析
【分析】(1)证明△EAB≌△DBC(SAS),可得结论.
(2)结论:AF=BO,证明△FCA≌△OCB(SAS),可得结
解析:(1)120;(2)相等,理由见解析;(3)AO=2OG.理由见解析
【分析】(1)证明△EAB≌△DBC(SAS),可得结论.
(2)结论:AF=BO,证明△FCA≌△OCB(SAS),可得结论.
(3)证明△AFO≌△OBR(SAS),推出OA=OR,可得结论.
【详解】解:(1)如图①中,
∵△ABC是等边三角形,
∴AB=BC,∠A=∠CBD=60°,
在△EAB和△DBC中,
,
∴△EAB≌△DBC(SAS),
∴∠ABE=∠BCD,
∴∠BOD=∠BCD+∠CBE=∠ABE+∠CBE=∠CBA=60°,
∴∠BOC=180°-60°=120°.
故答案为:120.
(2)相等.
理由:如图②中,
∵△FCO,△ACB都是等边三角形,
∴CF=CO,CA=CB,∠FCO=∠ACB=60°,
∴∠FCA=∠OCB,
在△FCA和△OCB中,
,
∴△FCA≌△OCB(SAS),
∴AF=BO.
(3)如图③中,结论:AO=2OG.
理由:延长OG到R,使得GR=GO,连接CR,BR.
在△CGO和△BGR中,
,
∴△CGO≌△BGR(SAS),
∴CO=BR=OF,∠GCO=∠GBR,AF=BO,
∴CO∥BR,
∵△FCA≌△OCB,
∴∠AFC=∠BOC=120°,
∵∠CFO=∠COF=60°,
∴∠AFO=∠COF=60°,
∴AF∥CO,
∴AF∥BR,
∴∠AFO=∠RBO,
在△AFO和△OBR中,
,
∴△AFO≌△OBR(SAS),
∴OA=OR,
∵OR=2OG,
∴OA=2OG.
【点睛】本题属于三角形综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
3.(1)(初步探索)结论:∠BAE+∠FAD=∠EAF;
(2)(灵活运用)成立,理由见解析
【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定△ABE≌△ADG,进而得出∠BAE=∠D
解析:(1)(初步探索)结论:∠BAE+∠FAD=∠EAF;
(2)(灵活运用)成立,理由见解析
【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF,据此得出结论;
(2)延长FD到点G,使DG=BE,连接AG,先判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.
(1)
解:∠BAE+∠FAD=∠EAF.
理由:如图1,延长FD到点G,使DG=BE,连接AG,
∵,
∴,
∵DG=BE,,
∴△ABE≌△ADG,
∴∠BAE=∠DAG,AE=AG,
∵EF=BE+FD,DG=BE,
∴,且AE=AG,AF=AF,
∴△AEF≌△AGF,
∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.
故答案为:∠BAE+∠FAD=∠EAF;
(2)
如图2,延长FD到点G,使DG=BE,连接AG,
∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,
∴∠B=∠ADG,
又∵AB=AD,
∴△ABE≌△ADG(SAS),
∴∠BAE=∠DAG,AE=AG,
∵EF=BE+FD=DG+FD=GF,AF=AF,
∴△AEF≌△AGF(SSS),
∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF
【点睛】本题考查了全等三角形的判定以及性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形.解题时注意:同角的补角相等.
4.(1)90;(2)①,理由见解析;②当点D在射线BC.上时,a+β=180°,当点D在射线BC的反向延长线上时,a=β.
【分析】(1)可以证明△BAD≌△CAE,得到∠B=∠ACE,证明∠ACB
解析:(1)90;(2)①,理由见解析;②当点D在射线BC.上时,a+β=180°,当点D在射线BC的反向延长线上时,a=β.
【分析】(1)可以证明△BAD≌△CAE,得到∠B=∠ACE,证明∠ACB=45°,即可解决问题;
(2)①证明△BAD≌△CAE,得到∠B=∠ACE,β=∠B+∠ACB,即可解决问题;
②证明△BAD≌△CAE,得到∠ABD=∠ACE,借助三角形外角性质即可解决问题.
【详解】解:(1)∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,
∵∠DAE=∠BAC,
∴∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△BAD≌△CAE(SAS)
∴∠ABC=∠ACE=45°,
∴∠BCE=∠ACB+∠ACE=90°,
故答案为:;
(2)①.
理由:∵,
∴.
即.
又,
∴.
∴.
∴.
∴.
∵,
∴.
②如图:当点D在射线BC上时,α+β=180°,连接CE,
∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS),
∴∠ABD=∠ACE,
在△ABC中,∠BAC+∠B+∠ACB=180°,
∴∠BAC+∠ACE+∠ACB=∠BAC+∠BCE=180°,
即:∠BCE+∠BAC=180°,
∴α+β=180°,
如图:当点D在射线BC的反向延长线上时,α=β.连接BE,
∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
又∵AB=AC,AD=AE,
∴△ABD≌△ACE(SAS),
∴∠ABD=∠ACE,
∴∠ABD=∠ACE=∠ACB+∠BCE,
∴∠ABD+∠ABC=∠ACE+∠ABC=∠ACB+∠BCE+∠ABC=180°,
∵∠BAC=180°-∠ABC-∠ACB,
∴∠BAC=∠BCE.
∴α=β;
综上所述:点D在直线BC上移动,α+β=180°或α=β.
【点睛】该题主要考查了等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点及其应用问题;应牢固掌握等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点.
5.(1)10;证明见解析;
(2),,理由见解析;
【分析】(1)①利用可求出,,即可求出;②作交AB与点C,交AB与点F,证明,再证明,利用,即可证明;
(2)证明,得到,,再利用等量代换证明
解析:(1)10;证明见解析;
(2),,理由见解析;
【分析】(1)①利用可求出,,即可求出;②作交AB与点C,交AB与点F,证明,再证明,利用,即可证明;
(2)证明,得到,,再利用等量代换证明;
(1)
解:①由图可知,
∵
∴,即,
∴,,
∴;
②作交AB与点C,交AB与点F,如图,
∵,,
∴,
在和中,
∴,
∴,,,
∵,
∴,
∴,
∴,即,
∵,
∴,
∴,
∵,
∴,
即,
(2)
解:,,理由如下:
假设DE交BC于点G,
有已知可知:,,,,
∴,
∵
∴
∵,且,
∴,
在和中,
∴,
∴,,
∵,
∴,
∴,
【点睛】本题考查三角形全等的判定,等量代换,绝对值非负性的应用,直角坐标系中的图形,(1)的关键是证明,(2)的关键证明.
6.(1)△AOB为等腰直角三角形;理由见解析
(2)BN=3
(3)PB的长为定值;
【分析】(1)根据题意求出a、b的值,即可得出A与B坐标,根据OA=OB,即可确定△AOB的形状;
(2)
解析:(1)△AOB为等腰直角三角形;理由见解析
(2)BN=3
(3)PB的长为定值;
【分析】(1)根据题意求出a、b的值,即可得出A与B坐标,根据OA=OB,即可确定△AOB的形状;
(2)由OA=OB,利用AAS得到△AMO≌△ONB,用对应线段相等求长度;
(3)如图,作EK⊥y轴于K点,利用AAS得到△AOB≌△BKE,利用全等三角形对应边相等得到OA=BK,EK=OB,再利用AAS得到△PBF≌△PKE,寻找相等线段,并进行转化,求PB的长.
(1)
解:结论:△OAB是等腰直角三角形;理由如下:
∵+b2-10b+25=0,即,
∴,解得:,
∴A(−5,0),B(0,5),
∴OA=OB=5,
∴△AOB是等腰直角三角形.
(2)
解:∵AM⊥OQ,BN⊥OQ,
∴,
,
∴,
∴,
∵在△AMO与△ONB中,
∴△AMO≌△ONB(AAS),
∴AM=ON=4,BN=OM,
∵MN=7,
∴OM=3,
∴BN=OM=3.
(3)
解:结论:PB的长为定值.理由如下,
作EK⊥y轴于K点,如图所示:
∵△ABE为等腰直角三角形,
∴AB=BE,∠ABE=90°,
∴∠EBK+∠ABO=90°,
∵∠EBK+∠BEK=90°,
∴∠ABO=∠BEK,
∵在△AOB和△BKE中,
∴△AOB≌△BKE(AAS),
∴OA=BK,EK=OB,
∵△OBF为等腰直角三角形,
∴OB=BF,
∴EK=BF,
∵在△EKP和△FBP中,
∴△PBF≌△PKE(AAS),
∴PK=PB,
∴PB=BK=OA=.
【点睛】本题属于三角形综合题,考查非负数的性质,全等三角形的判定与性质、等腰直角三角形的性质等知识,熟练掌握全等三角形的判定与性质是解本题的关键.
7.(1)见解析
(2),3
(3)m=105,n=150
【分析】(1)由条件易证,得,即可得证.
(2)PD=AD-AP=6-x,点P在线段BC上且不与B、C重合时, AP有最小值,即AD⊥
解析:(1)见解析
(2),3
(3)m=105,n=150
【分析】(1)由条件易证,得,即可得证.
(2)PD=AD-AP=6-x,点P在线段BC上且不与B、C重合时, AP有最小值,即AD⊥BC时AP的长度,此时PD可得最大值.
(3)为与的角平分线的交点,应用“三角形内角和等于180°”及角平分线定义,即可表示出,从而得到m,n的值.
(1)
解:在和中,如图1
即
(2)
解:
当AD⊥BC时,AP=AB=3最小,即PD=6﹣3=3为PD的最大值
(3)
解:如图2,设则
为与的角平分线的交点
即
【点睛】本题是一道几何综合题,考查了点到直线的距离垂线段最短,30°的角所对的直角边等于斜边的一半,全等三角形的判定和性质,角平分线定义等,解题关键是将PD最大值转化为PA的最小值.
8.(1)见解析;(2)见解析;(3)见解析
【分析】(1)根据即可证明;
(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;
(3)延
解析:(1)见解析;(2)见解析;(3)见解析
【分析】(1)根据即可证明;
(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;
(3)延长到,使,连接,,延长交于点,根据证明,得出,,故,由平行线的性质得出,进而推出,根据证明,故,,即可证明.
【详解】(1)轴于点,轴于点,
,
,,
,,
;
(2)
如图2,过点作轴,交于点,
,
,
轴,
,
,
,
,,,
,
在与中,
,
,
,即点为中点;
(3)
如图3,延长到,使,连接,,延长交于点,
,,,
,
,,
,
,
,
,
,
,,
,
,
,
,
,,
,
,即.
【点睛】本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键.
9.(1),
(2),理由见解析
(3)
【分析】(1)由角平分线的定义得,则,再利用三角形内角和定理可得答案;
(2)根据三角形内角和定理得,而,代入化简即可;
(3)由(2)同理可得答案.
解析:(1),
(2),理由见解析
(3)
【分析】(1)由角平分线的定义得,则,再利用三角形内角和定理可得答案;
(2)根据三角形内角和定理得,而,代入化简即可;
(3)由(2)同理可得答案.
(1)
解:点是和平分线的交点,
,
,
在中,
,
,
,
,
故答案为:;
在中,,
,
,
,
,
故答案为:;
(2)
解:,理由如下:
,,,
,
,
,
,
;
(3)
解:在中,,
,
,
,
,
故答案为:.
【点睛】本题主要考查了三角形内角和定理,角平分线的定义,解题的关键是采取类比的方法,同时渗透了整体思想.
展开阅读全文