收藏 分销(赏)

初二上学期压轴题强化数学检测试卷含解析(一).doc

上传人:精**** 文档编号:1716954 上传时间:2024-05-08 格式:DOC 页数:19 大小:1.02MB
下载 相关 举报
初二上学期压轴题强化数学检测试卷含解析(一).doc_第1页
第1页 / 共19页
初二上学期压轴题强化数学检测试卷含解析(一).doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述
初二上学期压轴题强化数学检测试卷含解析(一) 1.已知点A在x轴正半轴上,以OA为边作等边OAB,A(x,0),其中x是方程的解. (1)求点A的坐标; (2)如图1,点C在y轴正半轴上,以AC为边在第一象限内作等边ACD,连DB并延长交y轴于点E,求的度数; (3)如图2,点F为x轴正半轴上一动点,点F在点A的右边,连接FB,以FB为边在第一象限内作等边FBG,连GA并延长交y轴于点H,当点F运动时,的值是否发生变化?若不变,求其值;若变化,求出其变化的范围. 2.如图,已知CD是线段AB的垂直平分线,垂足为D,C在D点上方,∠BAC=30°,P是直线CD上一动点,E是射线AC上除A点外的一点,PB=PE,连BE. (1)如图1,若点P与点C重合,求∠ABE的度数; (2)如图2,若P在C点上方,求证:PD+AC=CE; (3)若AC=6,CE=2,则PD的值为   (直接写出结果). 3.如图,中,,. (1)如图1,,,求证:; (2)如图2,,,请直接用几何语言写出、的位置关系____________; (3)证明(2)中的结论. 4.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE =∠BAC,连接CE. (1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=________度; (2)设,. ①如图2,当点在线段BC上移动,则,之间有怎样的数量关系?请说明理由; ②当点在直线BC上移动,则,之间有怎样的数量关系?请直接写出你的结论. 5.在平面直角坐标系中,点A(a,0),点B(0,b),已知a,b满足. (1)求点A和点B的坐标; (2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的坐标;: (3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标. 6.如图1,在平面直角坐标系中,直线AB与轴交于点A、与轴交于点B,且∠ABO=45°,A(-6,0),直线BC与直线AB关于轴对称. (1)求△ABC的面积; (2)如图2,D为OA延长线上一动点,以BD为直角边,D为直角顶点,作等腰直角△BDE,求证:AB⊥AE; (3)如图3,点E是轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N是线段AO上一动点,判断是否存在这样的点M,N,使OM+NM的值最小?若存在,请写出其最小值,并加以说明. 7.已知ABC中,∠BAC=60°,以AB和BC为边向外作等边ABD和等边BCE. (1)连接AE、CD,如图1,求证:AE=CD; (2)若N为CD中点,连接AN,如图2,求证:CE=2AN (3)若AB⊥BC,延长AB交DE于M,DB=,如图3,则BM=_______(直接写出结果) 8.如图1,A(﹣2,6),C(6,2),AB⊥y轴于点B,CD⊥x轴于点D. (1)求证:△AOB≌△COD; (2)如图2,连接AC,BD交于点P,求证:点P为AC中点; (3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EF.EF⊥CE且EF=CE,点G为AF中点.连接EG,EO,求证:∠OEG=45°. 【参考答案】 2.(1);(2);(3)的值是定值,9. 【分析】(1)先求出方程的解为,即可求解; (2)由“SAS”可证△CAO≌△DAB,可得∠DBA=∠COA=90°,由四边形内角和定理可求解; (3) 解析:(1);(2);(3)的值是定值,9. 【分析】(1)先求出方程的解为,即可求解; (2)由“SAS”可证△CAO≌△DAB,可得∠DBA=∠COA=90°,由四边形内角和定理可求解; (3)由“SAS”可证△ABG≌△OBF可得OF=AG,∠BAG=∠BOF=60°,可求∠OAH=60°,可得AH=6,即可求解. 【详解】解:(1)∵是方程的解. 解得:, 检验当时,,, ∴是原方程的解, ∴点; (2)∵△ACD,△ABO是等边三角形, ∴AO=AB,AD=AC,∠BAO=∠CAD=60°, ∴∠CAO=∠BAD,且AO=AB,AD=AC, ∴△CAO≌△DAB(SAS) ∴∠DBA=∠COA=90°, ∴∠ABE=90°, ∵∠AOE+∠ABE+∠OAB+∠BEO=360°, ∴∠BEO=120°; (3)GH−AF的值是定值, 理由如下:∵△ABC,△BFG是等边三角形, ∴BO=AB=AO=3,FB=BG,∠BOA=∠ABO=∠FBG=60°, ∴∠OBF=∠ABG,且OB=AB,BF=BG, ∴△ABG≌△OBF(SAS), ∴OF=AG,∠BAG=∠BOF=60°, ∴AG=OF=OA+AF=3+AF, ∵∠OAH=180°−∠OAB−∠BAG, ∴∠OAH=60°,且∠AOH=90°,OA=3, ∴AH=6, ∴GH−AF=AH+AG−AF=6+3+AF−AF=9. 【点睛】本题是三角形综合题,考查了分式方程的解法,等边三角形性质,全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力. 3.(1)∠ABE=90°;(2)PD+AC=CE,见解析;(3)1 【分析】(1)根据线段垂直平分线的性质和等边三角形的判定与性质得到:△BPE为等边三角形,则∠CBE=60°,故∠ABE=90°; 解析:(1)∠ABE=90°;(2)PD+AC=CE,见解析;(3)1 【分析】(1)根据线段垂直平分线的性质和等边三角形的判定与性质得到:△BPE为等边三角形,则∠CBE=60°,故∠ABE=90°; (2)如图2,过P作PH⊥AE于H,连BC,作PG⊥BC交BC的延长线于G,构造含30度角的直角△PCG、直角△CPH以及全等三角形(Rt△PGB≌Rt△PHE),根据含30度的直角三角形的性质和全等三角形的对应边相等证得结论; (3)分三种情况讨论,根据(2)的解题思路得到PD=AC+CE或PD=CE-AC,将数值代入求解即可. 【详解】(1)解:如图1,∵点P与点C重合,CD是线段AB的垂直平分线, ∴PA=PB, ∴∠PAB=∠PBA=30°, ∴∠BPE=∠PAB+∠PBA=60°, ∵PB=PE, ∴△BPE为等边三角形, ∴∠CBE=60°, ∴∠ABE=90°; (2)如图2,过P作PH⊥AE于H,连BC,作PG⊥BC交BC的延长线于G, ∵CD垂直平分AB, ∴CA=CB, ∵∠BAC=30°, ∴∠ACD=∠BCD=60°, ∴∠GCP=∠HCP=∠BCE=∠ACD=∠BCD=60°, ∴∠GPC=∠HPC=30°, ∴PG=PH,CG=CH=CP,CD=AC, 在Rt△PGB和Rt△PHE中, , ∴Rt△PGB≌Rt△PHE(HL). ∴BG=EH,即CB+CG=CE-CH, ∴CB+CP=CE-CP,即CB+CP=CE, 又∵CB=AC, ∴CP=PD-CD=PD-AC, ∴PD+AC=CE; (3)①当P在C点上方时,由(2)得:PD=CE-AC, 当AC=6,CE=2时,PD=2-3=-1,不符合题意; ②当P在线段CD上时, 如图3,过P作PH⊥AE于H,连BC,作PG⊥BC交BC于G, 此时Rt△PGB≌Rt△PHE(HL), ∴BG=EH,即CB-CG=CE+CH, ∴CB-CP=CE+CP,即CP=CB-CE, 又∵CB=AC, ∴PD=CD-CP=AC-CB+CE, ∴PD=CE-AC. 当AC=6,CE=2时,PD=2-3=-1,不符合题意; ③当P在D点下方时,如图4, 同理,PD=AC-CE, 当AC=6,CE=2时,PD=3-2=1. 故答案为:1. 【点睛】本题主要考查了三角形综合题,综合运用全等三角形的判定与性质,含30度角直角三角形的性质,等边三角形的判定与性质等知识点,难度较大,解题时,注意要分类讨论. 4.(1)见解析;(2)⊥;(3)见解析 【分析】(1)根据垂直的定义可得∠ADC=∠E=90°,根据余角的性质可得∠ACD=∠BAE,然后根据AAS即可证得结论; (2)由于要得出、的位置关系,结 解析:(1)见解析;(2)⊥;(3)见解析 【分析】(1)根据垂直的定义可得∠ADC=∠E=90°,根据余角的性质可得∠ACD=∠BAE,然后根据AAS即可证得结论; (2)由于要得出、的位置关系,结合图形可猜想:⊥; (3)如图,作CP⊥AC于点C,延长FD交CP于点P,先证明△BAE≌△FCP,可得∠3=∠P,AB=CP,然后证明△ACD≌△PCD,可得∠4=∠P,进一步即可推出∠4+∠2=90°,问题得证. 【详解】解:(1)证明:∵,, ∴∠ADC=∠E=90°,∠DAC+∠ACD=90°, ∵, ∴∠DAC+∠BAE=90°, ∴∠ACD=∠BAE, 在△DAC和△EBA中, ∵∠ADC=∠E,∠ACD=∠BAE,AC=AB, ∴(AAS); (2)结合图形可得:⊥; 故答案为:⊥; (3)证明:如图,作CP⊥AC于点C,延长FD交CP于点P, ∵AF=CE, ∴AE=CF, ∵, ∴∠1=∠2, ∵∠BAE=∠FCP=90°, ∴△BAE≌△FCP, ∴∠3=∠P,AB=CP, ∵,, ∴∠ABC=∠ACB=45°, ∵∠PCP=90°,AB=CP, ∴∠FCD=45°,AC=PC, ∴∠ACB=∠PCD, ∵CD=CD, ∴△ACD≌△PCD, ∴∠4=∠P, ∵∠3=∠P, ∴∠3=∠4, ∵∠3+∠2=90°, ∴∠4+∠2=90°, ∴∠AGE=90°,即⊥. 【点睛】本题考查了等腰直角三角形的性质、全等三角形的判定和性质,正确添加辅助线、熟练掌握全等三角形的判定和性质是解题的关键. 5.(1)90;(2)①,理由见解析;②当点D在射线BC.上时,a+β=180°,当点D在射线BC的反向延长线上时,a=β. 【分析】(1)可以证明△BAD≌△CAE,得到∠B=∠ACE,证明∠ACB 解析:(1)90;(2)①,理由见解析;②当点D在射线BC.上时,a+β=180°,当点D在射线BC的反向延长线上时,a=β. 【分析】(1)可以证明△BAD≌△CAE,得到∠B=∠ACE,证明∠ACB=45°,即可解决问题; (2)①证明△BAD≌△CAE,得到∠B=∠ACE,β=∠B+∠ACB,即可解决问题; ②证明△BAD≌△CAE,得到∠ABD=∠ACE,借助三角形外角性质即可解决问题. 【详解】解:(1)∵AB=AC,∠BAC=90°, ∴∠ABC=∠ACB=45°, ∵∠DAE=∠BAC, ∴∠BAD=∠CAE, ∵AB=AC,AD=AE, ∴△BAD≌△CAE(SAS) ∴∠ABC=∠ACE=45°, ∴∠BCE=∠ACB+∠ACE=90°, 故答案为:; (2)①. 理由:∵, ∴. 即. 又, ∴. ∴. ∴. ∴. ∵, ∴. ②如图:当点D在射线BC上时,α+β=180°,连接CE, ∵∠BAC=∠DAE, ∴∠BAD=∠CAE, 在△ABD和△ACE中, , ∴△ABD≌△ACE(SAS), ∴∠ABD=∠ACE, 在△ABC中,∠BAC+∠B+∠ACB=180°, ∴∠BAC+∠ACE+∠ACB=∠BAC+∠BCE=180°, 即:∠BCE+∠BAC=180°, ∴α+β=180°, 如图:当点D在射线BC的反向延长线上时,α=β.连接BE, ∵∠BAC=∠DAE, ∴∠BAD=∠CAE, 又∵AB=AC,AD=AE, ∴△ABD≌△ACE(SAS), ∴∠ABD=∠ACE, ∴∠ABD=∠ACE=∠ACB+∠BCE, ∴∠ABD+∠ABC=∠ACE+∠ABC=∠ACB+∠BCE+∠ABC=180°, ∵∠BAC=180°-∠ABC-∠ACB, ∴∠BAC=∠BCE. ∴α=β; 综上所述:点D在直线BC上移动,α+β=180°或α=β. 【点睛】该题主要考查了等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点及其应用问题;应牢固掌握等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点. 6.(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2) 【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案; (2) 解析:(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2) 【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案; (2)如图,过点F作FH⊥AO于点H,根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH =2,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答案; (3)过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得NS=EM=4,MS=OE=2,即可完成求解. 【详解】(1)∵, ∴. ∵, ∴, ∴, ∴, ∴,. (2)如图,过点F作FH⊥AO于点H ∵AF⊥AE ∴∠FHA=∠AOE=90°, ∵ ∴∠AFH=∠EAO 又∵AF=AE, 在和中 ∴ ∴AH=EO=2,FH=AO=4 ∴OH=AO-AH=2 ∴F(-2,4) ∵OA=BO, ∴FH=BO 在和中 ∴ ∴HD=OD ∵ ∴HD=OD=1 ∴D(-1,0) ∴D(-1,0),F(-2,4); (3)如图,过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S ∴ ∴, ∴ ∴ ∴ ∴等腰 ∴NQ=NO, ∵NG⊥PN, NS⊥EG ∴ ∴, ∴ ∵, ∴ ∵点E为线段OB的中点 ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴等腰 ∴NG=NP, ∵ ∴ ∴∠QNG=∠ONP 在和中 ∴ ∴∠NGQ=∠NPO,GQ=PO ∵, ∴PO=PB ∴∠POE=∠PBE=45° ∴∠NPO=90° ∴∠NGQ=90° ∴∠QGR=45°. 在和中 ∴. ∴QR=OE 在和中 ∴ ∴QM=OM. ∵NQ=NO, ∴NM⊥OQ ∵ ∴等腰 ∴ ∵ ∴ 在和中 ∴ ∴NS=EM=4,MS=OE=2 ∴N(-6,2). 【点睛】本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解. 7.(1)36;(2)证明见解析;(3)3,理由见解析. 【分析】(1)根据直线与坐标轴的交点易得A,C的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解; (2) 过E作EF⊥x轴于点 解析:(1)36;(2)证明见解析;(3)3,理由见解析. 【分析】(1)根据直线与坐标轴的交点易得A,C的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解; (2) 过E作EF⊥x轴于点F,延长EA交y轴于点H,证△DEF≌△BDO,得出EF=OD=AF,有,得出∠BAE=90°. (3)由已知条件可在线段OA上任取一点N,再在AE作关于OF的对称点,当点N运动时,最短为点O到直线AE的距离.再由,在直角三角形中, 即可得解. 【详解】解:(1)由已知条件得:             AC=12,OB=6        ∴ (2)过E作EF⊥x轴于点F,延长EA交y轴于点H, ∵△BDE是等腰直角三角形, ∴DE=DB, ∠BDE=90°, ∴ ∵ ∴ ∴ ∵EF轴, ∴ ∴DF=BO=AO,EF=OD ∴AF=EF ∴ ∴∠BAE=90° (3)由已知条件可在线段OA上任取一点N,再在AE作关于OF的对称点,当点N运动时,最短为点O到直线AE的距离,即点O到直线AE的垂线段的长, ∵,OA=6, ∴OM+ON=3 【点睛】本题考查的知识点主要是直角三角形的性质及应用,轴对称在最短路径问题中的应用,弄懂题意,作出合理的辅助线是解题的关键. 8.(1)见解析 (2)见解析 (3) 【分析】(1)先判断出∠DBC=∠ABE,进而判断出△DBC≌△ABE,即可得出结论; (2)先判断出△ADN≌△FCN,得出CF=AD,∠NCF=∠AN 解析:(1)见解析 (2)见解析 (3) 【分析】(1)先判断出∠DBC=∠ABE,进而判断出△DBC≌△ABE,即可得出结论; (2)先判断出△ADN≌△FCN,得出CF=AD,∠NCF=∠AND,进而判断出∠BAC=∠ACF,即可判断出△ABC≌△CFA,即可得出结论; (3)先判断出△ABC≌△HEB(ASA),得出,,再判断出△ADM≌△HEM (AAS),得出AM=HM,即可得出结论. (1) 解:∵△ABD和△BCE是等边三角形, ∴BD=AB,BC=BE,∠ABD=∠CBE=60°, ∴∠ABD+∠ABC=∠CBE+∠ABC, ∴∠DBC=∠ABE, ∴△ABE≌△DBC(SAS), ∴AE=CD; (2) 解:如图,延长AN使NF=AN,连接FC, ∵N为CD中点, ∴DN=CN, ∵∠AND=∠FNC, ∴△ADN≌△FCN(SAS), ∴CF=AD,∠NCF=∠AND, ∵∠DAB=∠BAC=60° ∴∠ACD +∠ADN=60° ∴∠ACF=∠ACD+∠NCF=60°, ∴∠BAC=∠ACF, ∵△ABD是等边三角形, ∴AB=AD, ∴AB=CF, ∵AC=CA, ∴△ABC≌△CFA (SAS), ∴BC=AF, ∵△BCE是等边三角形, ∴CE=BC=AF=2AN; (3) 解: ∵△ABD是等边三角形, ∴,∠BAD=60°, 在Rt△ABC中,∠ACB=90°-∠BAC=30°, ∴, 如图,过点E作EH // AD交AM的延长线于H, ∴∠H=∠BAD=60°, ∵△BCE是等边三角形, ∴BC=BE,∠CBE=60°, ∵∠ABC=90°, ∴∠EBH=90°-∠CBE=30°=∠ACB, ∴∠BEH=180°-∠EBH-∠H=90°=∠ABC, ∴△ABC≌△HEB (ASA), ∴,, ∴AD=EH, ∵∠AMD=∠HME, ∴△ADM≌△HEM (AAS), ∴AM=HM, ∴ ∵,, ∴. 故答案为:. 【点睛】此题是三角形综合题,主要考查了等边三角形的性质,含30°角的直角三角形的性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键. 9.(1)见解析;(2)见解析;(3)见解析 【分析】(1)根据即可证明; (2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证; (3)延 解析:(1)见解析;(2)见解析;(3)见解析 【分析】(1)根据即可证明; (2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证; (3)延长到,使,连接,,延长交于点,根据证明,得出,,故,由平行线的性质得出,进而推出,根据证明,故,,即可证明. 【详解】(1)轴于点,轴于点, , ,, ,, ; (2) 如图2,过点作轴,交于点, , , 轴, , , , ,,, , 在与中, , , ,即点为中点; (3) 如图3,延长到,使,连接,,延长交于点, ,,, , ,, , , , , , ,, , , , , ,, , ,即. 【点睛】本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服