资源描述
初二上学期压轴题强化数学检测试卷含解析(一)
1.已知点A在x轴正半轴上,以OA为边作等边OAB,A(x,0),其中x是方程的解.
(1)求点A的坐标;
(2)如图1,点C在y轴正半轴上,以AC为边在第一象限内作等边ACD,连DB并延长交y轴于点E,求的度数;
(3)如图2,点F为x轴正半轴上一动点,点F在点A的右边,连接FB,以FB为边在第一象限内作等边FBG,连GA并延长交y轴于点H,当点F运动时,的值是否发生变化?若不变,求其值;若变化,求出其变化的范围.
2.如图,已知CD是线段AB的垂直平分线,垂足为D,C在D点上方,∠BAC=30°,P是直线CD上一动点,E是射线AC上除A点外的一点,PB=PE,连BE.
(1)如图1,若点P与点C重合,求∠ABE的度数;
(2)如图2,若P在C点上方,求证:PD+AC=CE;
(3)若AC=6,CE=2,则PD的值为 (直接写出结果).
3.如图,中,,.
(1)如图1,,,求证:;
(2)如图2,,,请直接用几何语言写出、的位置关系____________;
(3)证明(2)中的结论.
4.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE =∠BAC,连接CE.
(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=________度;
(2)设,.
①如图2,当点在线段BC上移动,则,之间有怎样的数量关系?请说明理由;
②当点在直线BC上移动,则,之间有怎样的数量关系?请直接写出你的结论.
5.在平面直角坐标系中,点A(a,0),点B(0,b),已知a,b满足.
(1)求点A和点B的坐标;
(2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的坐标;:
(3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标.
6.如图1,在平面直角坐标系中,直线AB与轴交于点A、与轴交于点B,且∠ABO=45°,A(-6,0),直线BC与直线AB关于轴对称.
(1)求△ABC的面积;
(2)如图2,D为OA延长线上一动点,以BD为直角边,D为直角顶点,作等腰直角△BDE,求证:AB⊥AE;
(3)如图3,点E是轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N是线段AO上一动点,判断是否存在这样的点M,N,使OM+NM的值最小?若存在,请写出其最小值,并加以说明.
7.已知ABC中,∠BAC=60°,以AB和BC为边向外作等边ABD和等边BCE.
(1)连接AE、CD,如图1,求证:AE=CD;
(2)若N为CD中点,连接AN,如图2,求证:CE=2AN
(3)若AB⊥BC,延长AB交DE于M,DB=,如图3,则BM=_______(直接写出结果)
8.如图1,A(﹣2,6),C(6,2),AB⊥y轴于点B,CD⊥x轴于点D.
(1)求证:△AOB≌△COD;
(2)如图2,连接AC,BD交于点P,求证:点P为AC中点;
(3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EF.EF⊥CE且EF=CE,点G为AF中点.连接EG,EO,求证:∠OEG=45°.
【参考答案】
2.(1);(2);(3)的值是定值,9.
【分析】(1)先求出方程的解为,即可求解;
(2)由“SAS”可证△CAO≌△DAB,可得∠DBA=∠COA=90°,由四边形内角和定理可求解;
(3)
解析:(1);(2);(3)的值是定值,9.
【分析】(1)先求出方程的解为,即可求解;
(2)由“SAS”可证△CAO≌△DAB,可得∠DBA=∠COA=90°,由四边形内角和定理可求解;
(3)由“SAS”可证△ABG≌△OBF可得OF=AG,∠BAG=∠BOF=60°,可求∠OAH=60°,可得AH=6,即可求解.
【详解】解:(1)∵是方程的解.
解得:,
检验当时,,,
∴是原方程的解,
∴点;
(2)∵△ACD,△ABO是等边三角形,
∴AO=AB,AD=AC,∠BAO=∠CAD=60°,
∴∠CAO=∠BAD,且AO=AB,AD=AC,
∴△CAO≌△DAB(SAS)
∴∠DBA=∠COA=90°,
∴∠ABE=90°,
∵∠AOE+∠ABE+∠OAB+∠BEO=360°,
∴∠BEO=120°;
(3)GH−AF的值是定值,
理由如下:∵△ABC,△BFG是等边三角形,
∴BO=AB=AO=3,FB=BG,∠BOA=∠ABO=∠FBG=60°,
∴∠OBF=∠ABG,且OB=AB,BF=BG,
∴△ABG≌△OBF(SAS),
∴OF=AG,∠BAG=∠BOF=60°,
∴AG=OF=OA+AF=3+AF,
∵∠OAH=180°−∠OAB−∠BAG,
∴∠OAH=60°,且∠AOH=90°,OA=3,
∴AH=6,
∴GH−AF=AH+AG−AF=6+3+AF−AF=9.
【点睛】本题是三角形综合题,考查了分式方程的解法,等边三角形性质,全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力.
3.(1)∠ABE=90°;(2)PD+AC=CE,见解析;(3)1
【分析】(1)根据线段垂直平分线的性质和等边三角形的判定与性质得到:△BPE为等边三角形,则∠CBE=60°,故∠ABE=90°;
解析:(1)∠ABE=90°;(2)PD+AC=CE,见解析;(3)1
【分析】(1)根据线段垂直平分线的性质和等边三角形的判定与性质得到:△BPE为等边三角形,则∠CBE=60°,故∠ABE=90°;
(2)如图2,过P作PH⊥AE于H,连BC,作PG⊥BC交BC的延长线于G,构造含30度角的直角△PCG、直角△CPH以及全等三角形(Rt△PGB≌Rt△PHE),根据含30度的直角三角形的性质和全等三角形的对应边相等证得结论;
(3)分三种情况讨论,根据(2)的解题思路得到PD=AC+CE或PD=CE-AC,将数值代入求解即可.
【详解】(1)解:如图1,∵点P与点C重合,CD是线段AB的垂直平分线,
∴PA=PB,
∴∠PAB=∠PBA=30°,
∴∠BPE=∠PAB+∠PBA=60°,
∵PB=PE,
∴△BPE为等边三角形,
∴∠CBE=60°,
∴∠ABE=90°;
(2)如图2,过P作PH⊥AE于H,连BC,作PG⊥BC交BC的延长线于G,
∵CD垂直平分AB,
∴CA=CB,
∵∠BAC=30°,
∴∠ACD=∠BCD=60°,
∴∠GCP=∠HCP=∠BCE=∠ACD=∠BCD=60°,
∴∠GPC=∠HPC=30°,
∴PG=PH,CG=CH=CP,CD=AC,
在Rt△PGB和Rt△PHE中,
,
∴Rt△PGB≌Rt△PHE(HL).
∴BG=EH,即CB+CG=CE-CH,
∴CB+CP=CE-CP,即CB+CP=CE,
又∵CB=AC,
∴CP=PD-CD=PD-AC,
∴PD+AC=CE;
(3)①当P在C点上方时,由(2)得:PD=CE-AC,
当AC=6,CE=2时,PD=2-3=-1,不符合题意;
②当P在线段CD上时,
如图3,过P作PH⊥AE于H,连BC,作PG⊥BC交BC于G,
此时Rt△PGB≌Rt△PHE(HL),
∴BG=EH,即CB-CG=CE+CH,
∴CB-CP=CE+CP,即CP=CB-CE,
又∵CB=AC,
∴PD=CD-CP=AC-CB+CE,
∴PD=CE-AC.
当AC=6,CE=2时,PD=2-3=-1,不符合题意;
③当P在D点下方时,如图4,
同理,PD=AC-CE,
当AC=6,CE=2时,PD=3-2=1.
故答案为:1.
【点睛】本题主要考查了三角形综合题,综合运用全等三角形的判定与性质,含30度角直角三角形的性质,等边三角形的判定与性质等知识点,难度较大,解题时,注意要分类讨论.
4.(1)见解析;(2)⊥;(3)见解析
【分析】(1)根据垂直的定义可得∠ADC=∠E=90°,根据余角的性质可得∠ACD=∠BAE,然后根据AAS即可证得结论;
(2)由于要得出、的位置关系,结
解析:(1)见解析;(2)⊥;(3)见解析
【分析】(1)根据垂直的定义可得∠ADC=∠E=90°,根据余角的性质可得∠ACD=∠BAE,然后根据AAS即可证得结论;
(2)由于要得出、的位置关系,结合图形可猜想:⊥;
(3)如图,作CP⊥AC于点C,延长FD交CP于点P,先证明△BAE≌△FCP,可得∠3=∠P,AB=CP,然后证明△ACD≌△PCD,可得∠4=∠P,进一步即可推出∠4+∠2=90°,问题得证.
【详解】解:(1)证明:∵,,
∴∠ADC=∠E=90°,∠DAC+∠ACD=90°,
∵,
∴∠DAC+∠BAE=90°,
∴∠ACD=∠BAE,
在△DAC和△EBA中,
∵∠ADC=∠E,∠ACD=∠BAE,AC=AB,
∴(AAS);
(2)结合图形可得:⊥;
故答案为:⊥;
(3)证明:如图,作CP⊥AC于点C,延长FD交CP于点P,
∵AF=CE,
∴AE=CF,
∵,
∴∠1=∠2,
∵∠BAE=∠FCP=90°,
∴△BAE≌△FCP,
∴∠3=∠P,AB=CP,
∵,,
∴∠ABC=∠ACB=45°,
∵∠PCP=90°,AB=CP,
∴∠FCD=45°,AC=PC,
∴∠ACB=∠PCD,
∵CD=CD,
∴△ACD≌△PCD,
∴∠4=∠P,
∵∠3=∠P,
∴∠3=∠4,
∵∠3+∠2=90°,
∴∠4+∠2=90°,
∴∠AGE=90°,即⊥.
【点睛】本题考查了等腰直角三角形的性质、全等三角形的判定和性质,正确添加辅助线、熟练掌握全等三角形的判定和性质是解题的关键.
5.(1)90;(2)①,理由见解析;②当点D在射线BC.上时,a+β=180°,当点D在射线BC的反向延长线上时,a=β.
【分析】(1)可以证明△BAD≌△CAE,得到∠B=∠ACE,证明∠ACB
解析:(1)90;(2)①,理由见解析;②当点D在射线BC.上时,a+β=180°,当点D在射线BC的反向延长线上时,a=β.
【分析】(1)可以证明△BAD≌△CAE,得到∠B=∠ACE,证明∠ACB=45°,即可解决问题;
(2)①证明△BAD≌△CAE,得到∠B=∠ACE,β=∠B+∠ACB,即可解决问题;
②证明△BAD≌△CAE,得到∠ABD=∠ACE,借助三角形外角性质即可解决问题.
【详解】解:(1)∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,
∵∠DAE=∠BAC,
∴∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△BAD≌△CAE(SAS)
∴∠ABC=∠ACE=45°,
∴∠BCE=∠ACB+∠ACE=90°,
故答案为:;
(2)①.
理由:∵,
∴.
即.
又,
∴.
∴.
∴.
∴.
∵,
∴.
②如图:当点D在射线BC上时,α+β=180°,连接CE,
∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS),
∴∠ABD=∠ACE,
在△ABC中,∠BAC+∠B+∠ACB=180°,
∴∠BAC+∠ACE+∠ACB=∠BAC+∠BCE=180°,
即:∠BCE+∠BAC=180°,
∴α+β=180°,
如图:当点D在射线BC的反向延长线上时,α=β.连接BE,
∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
又∵AB=AC,AD=AE,
∴△ABD≌△ACE(SAS),
∴∠ABD=∠ACE,
∴∠ABD=∠ACE=∠ACB+∠BCE,
∴∠ABD+∠ABC=∠ACE+∠ABC=∠ACB+∠BCE+∠ABC=180°,
∵∠BAC=180°-∠ABC-∠ACB,
∴∠BAC=∠BCE.
∴α=β;
综上所述:点D在直线BC上移动,α+β=180°或α=β.
【点睛】该题主要考查了等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点及其应用问题;应牢固掌握等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点.
6.(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)
【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;
(2)
解析:(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)
【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;
(2)如图,过点F作FH⊥AO于点H,根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH =2,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答案;
(3)过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得NS=EM=4,MS=OE=2,即可完成求解.
【详解】(1)∵,
∴.
∵,
∴,
∴,
∴,
∴,.
(2)如图,过点F作FH⊥AO于点H
∵AF⊥AE
∴∠FHA=∠AOE=90°,
∵
∴∠AFH=∠EAO
又∵AF=AE,
在和中
∴
∴AH=EO=2,FH=AO=4
∴OH=AO-AH=2
∴F(-2,4)
∵OA=BO,
∴FH=BO
在和中
∴
∴HD=OD
∵
∴HD=OD=1
∴D(-1,0)
∴D(-1,0),F(-2,4);
(3)如图,过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S
∴
∴,
∴
∴
∴
∴等腰
∴NQ=NO,
∵NG⊥PN, NS⊥EG
∴
∴,
∴
∵,
∴
∵点E为线段OB的中点
∴
∴
∴
∴
∴
∴
∴
∴等腰
∴NG=NP,
∵
∴
∴∠QNG=∠ONP
在和中
∴
∴∠NGQ=∠NPO,GQ=PO
∵,
∴PO=PB
∴∠POE=∠PBE=45°
∴∠NPO=90°
∴∠NGQ=90°
∴∠QGR=45°.
在和中
∴.
∴QR=OE
在和中
∴
∴QM=OM.
∵NQ=NO,
∴NM⊥OQ
∵
∴等腰
∴
∵
∴
在和中
∴
∴NS=EM=4,MS=OE=2
∴N(-6,2).
【点睛】本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解.
7.(1)36;(2)证明见解析;(3)3,理由见解析.
【分析】(1)根据直线与坐标轴的交点易得A,C的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解;
(2) 过E作EF⊥x轴于点
解析:(1)36;(2)证明见解析;(3)3,理由见解析.
【分析】(1)根据直线与坐标轴的交点易得A,C的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解;
(2) 过E作EF⊥x轴于点F,延长EA交y轴于点H,证△DEF≌△BDO,得出EF=OD=AF,有,得出∠BAE=90°.
(3)由已知条件可在线段OA上任取一点N,再在AE作关于OF的对称点,当点N运动时,最短为点O到直线AE的距离.再由,在直角三角形中,
即可得解.
【详解】解:(1)由已知条件得:
AC=12,OB=6
∴
(2)过E作EF⊥x轴于点F,延长EA交y轴于点H,
∵△BDE是等腰直角三角形,
∴DE=DB, ∠BDE=90°,
∴
∵
∴
∴
∵EF轴,
∴
∴DF=BO=AO,EF=OD
∴AF=EF
∴
∴∠BAE=90°
(3)由已知条件可在线段OA上任取一点N,再在AE作关于OF的对称点,当点N运动时,最短为点O到直线AE的距离,即点O到直线AE的垂线段的长,
∵,OA=6,
∴OM+ON=3
【点睛】本题考查的知识点主要是直角三角形的性质及应用,轴对称在最短路径问题中的应用,弄懂题意,作出合理的辅助线是解题的关键.
8.(1)见解析
(2)见解析
(3)
【分析】(1)先判断出∠DBC=∠ABE,进而判断出△DBC≌△ABE,即可得出结论;
(2)先判断出△ADN≌△FCN,得出CF=AD,∠NCF=∠AN
解析:(1)见解析
(2)见解析
(3)
【分析】(1)先判断出∠DBC=∠ABE,进而判断出△DBC≌△ABE,即可得出结论;
(2)先判断出△ADN≌△FCN,得出CF=AD,∠NCF=∠AND,进而判断出∠BAC=∠ACF,即可判断出△ABC≌△CFA,即可得出结论;
(3)先判断出△ABC≌△HEB(ASA),得出,,再判断出△ADM≌△HEM (AAS),得出AM=HM,即可得出结论.
(1)
解:∵△ABD和△BCE是等边三角形,
∴BD=AB,BC=BE,∠ABD=∠CBE=60°,
∴∠ABD+∠ABC=∠CBE+∠ABC,
∴∠DBC=∠ABE,
∴△ABE≌△DBC(SAS),
∴AE=CD;
(2)
解:如图,延长AN使NF=AN,连接FC,
∵N为CD中点,
∴DN=CN,
∵∠AND=∠FNC,
∴△ADN≌△FCN(SAS),
∴CF=AD,∠NCF=∠AND,
∵∠DAB=∠BAC=60°
∴∠ACD +∠ADN=60°
∴∠ACF=∠ACD+∠NCF=60°,
∴∠BAC=∠ACF,
∵△ABD是等边三角形,
∴AB=AD,
∴AB=CF,
∵AC=CA,
∴△ABC≌△CFA (SAS),
∴BC=AF,
∵△BCE是等边三角形,
∴CE=BC=AF=2AN;
(3)
解: ∵△ABD是等边三角形,
∴,∠BAD=60°,
在Rt△ABC中,∠ACB=90°-∠BAC=30°,
∴,
如图,过点E作EH // AD交AM的延长线于H,
∴∠H=∠BAD=60°,
∵△BCE是等边三角形,
∴BC=BE,∠CBE=60°,
∵∠ABC=90°,
∴∠EBH=90°-∠CBE=30°=∠ACB,
∴∠BEH=180°-∠EBH-∠H=90°=∠ABC,
∴△ABC≌△HEB (ASA),
∴,,
∴AD=EH,
∵∠AMD=∠HME,
∴△ADM≌△HEM (AAS),
∴AM=HM,
∴
∵,,
∴.
故答案为:.
【点睛】此题是三角形综合题,主要考查了等边三角形的性质,含30°角的直角三角形的性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键.
9.(1)见解析;(2)见解析;(3)见解析
【分析】(1)根据即可证明;
(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;
(3)延
解析:(1)见解析;(2)见解析;(3)见解析
【分析】(1)根据即可证明;
(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;
(3)延长到,使,连接,,延长交于点,根据证明,得出,,故,由平行线的性质得出,进而推出,根据证明,故,,即可证明.
【详解】(1)轴于点,轴于点,
,
,,
,,
;
(2)
如图2,过点作轴,交于点,
,
,
轴,
,
,
,
,,,
,
在与中,
,
,
,即点为中点;
(3)
如图3,延长到,使,连接,,延长交于点,
,,,
,
,,
,
,
,
,
,
,,
,
,
,
,
,,
,
,即.
【点睛】本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键.
展开阅读全文