收藏 分销(赏)

随机变量及分布列.ppt

上传人:w****g 文档编号:1712269 上传时间:2024-05-08 格式:PPT 页数:19 大小:272KB
下载 相关 举报
随机变量及分布列.ppt_第1页
第1页 / 共19页
随机变量及分布列.ppt_第2页
第2页 / 共19页
随机变量及分布列.ppt_第3页
第3页 / 共19页
随机变量及分布列.ppt_第4页
第4页 / 共19页
随机变量及分布列.ppt_第5页
第5页 / 共19页
点击查看更多>>
资源描述

1、2.1.1离散型随机变量离散型随机变量的分布列的分布列高二数学高二数学 选修选修2-312021引例:引例:(1)抛掷一枚骰子,可能出现的点数有几种情况?)抛掷一枚骰子,可能出现的点数有几种情况?(2)姚明罚球)姚明罚球2次有可能得到的分数有几种情况?次有可能得到的分数有几种情况?(3)抛掷一枚硬币,可能出现的结果有几种情况?)抛掷一枚硬币,可能出现的结果有几种情况?思考:在上述试验开始之前,你能确定结果是哪一思考:在上述试验开始之前,你能确定结果是哪一 种情况吗?种情况吗?1,2,3,4,5,60分分,1分分,2分分正面向上,反面向上正面向上,反面向上能否把掷硬能否把掷硬币的结果也币的结果也

2、用数字来表用数字来表示呢?示呢?分析:不行,虽然我们能够事先知道随机试验可能出分析:不行,虽然我们能够事先知道随机试验可能出现的现的所有所有结果,但在一般情况下,试验的结果是随机出结果,但在一般情况下,试验的结果是随机出现的。现的。22021 在前面的例子中,我们把随机试验的每一个结果在前面的例子中,我们把随机试验的每一个结果都用一个确定的数字来表示,这样试验结果的变化就都用一个确定的数字来表示,这样试验结果的变化就可看成是这些数字的变化。可看成是这些数字的变化。若把这些数字当做某个变量的取值,则这个变量若把这些数字当做某个变量的取值,则这个变量就叫做就叫做随机变量随机变量,常用,常用X、Y、

3、x x、h h 来表示。来表示。一、随机变量的概念:一、随机变量的概念:32021 按照我们的定义,所谓的随机变量,就是随机试验按照我们的定义,所谓的随机变量,就是随机试验的试验结果与实数之间的一个对应关系。那么,随机变量的试验结果与实数之间的一个对应关系。那么,随机变量与函数有类似的地方吗?与函数有类似的地方吗?随机变量是试验结果与实数的一种对应关系,而随机变量是试验结果与实数的一种对应关系,而函数是实数与实数的一种对应关系,它们都是一种映射函数是实数与实数的一种对应关系,它们都是一种映射 在这两种映射之间,在这两种映射之间,试验结果的范围相当于函数的定义域,试验结果的范围相当于函数的定义域

4、,随机变量的取值结果相当于函数的值域。随机变量的取值结果相当于函数的值域。所以我们也把随机变量的取值范围叫做随机变量的值域。所以我们也把随机变量的取值范围叫做随机变量的值域。42021例例1、一个袋中装有、一个袋中装有5个白球和个白球和5个黑球,若从中任取个黑球,若从中任取3个,个,则其中所含白球的个数则其中所含白球的个数X就就是一个随机变量,求是一个随机变量,求X的取值的取值范围,并说明范围,并说明X的不同取值所表示的事件。的不同取值所表示的事件。解:解:X的取值范围是的取值范围是 0,1,2,3 ,其中,其中 X=0表示的事件是表示的事件是“取出取出0个白球,个白球,3个黑球个黑球”;X=

5、1表示的事件是表示的事件是“取出取出1个白球,个白球,2个黑球个黑球”;X=2表示的事件是表示的事件是“取出取出2个白球,个白球,1个黑球个黑球”;X=3表示的事件是表示的事件是“取出取出3个白球,个白球,0个黑球个黑球”;变题:变题:X 3在这里又表示什么事件呢?在这里又表示什么事件呢?“取出的取出的3个球中,白球不超过个球中,白球不超过2个个”52021 写出下列各随机变量可能的取值,并说明它们各自写出下列各随机变量可能的取值,并说明它们各自所表示的随机试验的结果:所表示的随机试验的结果:(1)从)从10张已编号的卡片(从张已编号的卡片(从1号到号到10号)中任取号)中任取1张,张,被取出

6、的卡片的号数被取出的卡片的号数x x;(2)抛掷两个骰子,所得点数之和)抛掷两个骰子,所得点数之和Y;(3)某城市)某城市1天之中发生的火警次数天之中发生的火警次数X;(4)某品牌的电灯泡的寿命)某品牌的电灯泡的寿命X;(5)某林场树木最高达)某林场树木最高达30米,最低是米,最低是0.5米,则此林场米,则此林场 任意一棵树木的高度任意一棵树木的高度x x(x x=1、2、3、10)(Y=2、3、12)(X=0、1、2、3、)0,+)0.5,30思考:前思考:前3个随机变量与最后两个有什么区别?个随机变量与最后两个有什么区别?62021二、随机变量的分类:二、随机变量的分类:1、如果可以按一定

7、次序,把随机变量可能取的值一一、如果可以按一定次序,把随机变量可能取的值一一 列出,那么这样的随机变量就叫做列出,那么这样的随机变量就叫做离散型随机变量离散型随机变量。(如掷骰子的结果,城市每天火警的次数等等)(如掷骰子的结果,城市每天火警的次数等等)2、若随机变量可以取某个区间内的一切值,那么这样的、若随机变量可以取某个区间内的一切值,那么这样的 随机变量叫做随机变量叫做连续型随机变量连续型随机变量。(如灯泡的寿命,树木的高度等等)(如灯泡的寿命,树木的高度等等)注意:注意:(1)随机变量不止两种,我们只研究离散型随机变量;)随机变量不止两种,我们只研究离散型随机变量;(2)变量离散与否)变

8、量离散与否,与变量的选取有关;与变量的选取有关;比如:对灯泡的寿命问题,可定义如下离散型随机变量比如:对灯泡的寿命问题,可定义如下离散型随机变量72021 下列试验的结果能否用离散型随机变量表示?下列试验的结果能否用离散型随机变量表示?(1)已知在从汕头到广州的铁道线上,每隔)已知在从汕头到广州的铁道线上,每隔50米有一个米有一个 电线铁站,这些电线铁站的编号;电线铁站,这些电线铁站的编号;(2)任意抽取一瓶某种标有)任意抽取一瓶某种标有2500ml的饮料,其实际量的饮料,其实际量 与规定量之差;与规定量之差;(3)某城市)某城市1天之内的温度;天之内的温度;(4)某车站)某车站1小时内旅客流

9、动的人数;小时内旅客流动的人数;(5)连续不断地投篮,第一次投中需要的投篮次数)连续不断地投篮,第一次投中需要的投篮次数.(6)在优、良、中、及格、不及格)在优、良、中、及格、不及格5个等级的测试中,个等级的测试中,某同学可能取得的等级。某同学可能取得的等级。82021 若用若用X表示抛掷一枚质地均匀的骰子所得的点数,表示抛掷一枚质地均匀的骰子所得的点数,请把请把X取不同值的概率填入下表,并求判断下列事件发生取不同值的概率填入下表,并求判断下列事件发生的概率是多少?的概率是多少?(1)X是偶数是偶数;(;(2)X3;X123456P解:解:P(X是偶数是偶数)=P(X=2)+P(X=4)+P(

10、X=6)P(X3)=P(X=1)+P(X=2)92021三、离散型随机变量的分布列:三、离散型随机变量的分布列:一般地,若离散型随机变量一般地,若离散型随机变量X 可能取的不同值为:可能取的不同值为:x1,x2,xi,xnX取每一个取每一个xi(i=1,2,n)的概率的概率P(X=xi)=Pi,则称表:,则称表:Xx1x2xiPP1P2Pi为离散型随机变量为离散型随机变量X的的概率分布列概率分布列,简称为,简称为X的分布列的分布列.有时为了表达简单,也用等式有时为了表达简单,也用等式 P(X=xi)=Pi i=1,2,n来表示来表示X的分布列的分布列102021离散型随机变量的分布列应注意问题

11、:离散型随机变量的分布列应注意问题:Xx1x2xiPP1P2Pi1、分布列的构成:、分布列的构成:(1)列出了离散型随机变量)列出了离散型随机变量X的所有取值;的所有取值;(2)求出了)求出了X的每一个取值的概率;的每一个取值的概率;2、分布列的性质、分布列的性质:112021求离散型随机变量分布列的基本步骤:求离散型随机变量分布列的基本步骤:(1)确定随机变量的所有可能的值)确定随机变量的所有可能的值xi(2)求出各取值的概率)求出各取值的概率P(X=xi)=pi(3)列出表格)列出表格定值定值 求概率求概率 列表列表说明:在写出说明:在写出X的分布列后,要及时检查所有的的分布列后,要及时检

12、查所有的概率之和是否为概率之和是否为1 122021例例3、袋子中有、袋子中有3个红球,个红球,2个白球,个白球,1个黑球,这些球个黑球,这些球除颜色外完全相同,现要从中摸一个球出来,若摸到除颜色外完全相同,现要从中摸一个球出来,若摸到黑球得黑球得1分,摸到白球得分,摸到白球得0分,摸到红球倒扣分,摸到红球倒扣1分,试写分,试写出从该盒内随机取出一球所得分数出从该盒内随机取出一球所得分数X的分布列的分布列.解:因为只取解:因为只取1球,所以球,所以X的取值只能是的取值只能是1,0,-1从袋子中随机取出一球所得分数从袋子中随机取出一球所得分数X的分布列为:的分布列为:X10-1P132021例例

13、4:一个口袋有:一个口袋有5只同样大小的球,编号分别为只同样大小的球,编号分别为1,2,3,4,5,从中同时取出,从中同时取出3只,以只,以X表示取出的球最小的表示取出的球最小的号码,求号码,求X的分布列。的分布列。解:因为同时取出解:因为同时取出3个球,故个球,故X的取值只能是的取值只能是1,2,3当当X=1时,其他两球可在剩余的时,其他两球可在剩余的4个球中任选个球中任选 故其概率为故其概率为当当X=2时,其他两球的编号在时,其他两球的编号在3,4,5中选,中选,故其概率为故其概率为当当X=3时,只可能是时,只可能是3,4,5这种情况,这种情况,概率为概率为142021X123P随机变量随

14、机变量X的分布列为的分布列为例例4:一个口袋有:一个口袋有5只同样大小的球,编号分别为只同样大小的球,编号分别为1,2,3,4,5,从中同时取出,从中同时取出3只,以只,以X表示取出的球最小的表示取出的球最小的号码,求号码,求X的分布列。的分布列。152021例5:某一射手射击所得环数某一射手射击所得环数 的分布列如下的分布列如下:45678910P0.020.040.060.090.280.290.22求此射手求此射手”射击一次命中环数射击一次命中环数7”7”的概率的概率.分析分析:”射击一次命中环数射击一次命中环数7”7”是指互斥事是指互斥事件件”=7”,”=8”,”=9”,”=10”=7

15、”,”=8”,”=9”,”=10”的和的和.性质性质3 3:离散型随机变量在某一范围内取值的概率等于在这一范围内取每一:离散型随机变量在某一范围内取值的概率等于在这一范围内取每一个值的概率之和个值的概率之和162021课堂练习:课堂练习:0.30.16P3210-12、若随机变量、若随机变量的分布列如下表所示,则常数的分布列如下表所示,则常数a=_C172021小结:小结:一、随机变量的定义:一、随机变量的定义:二、随机变量的分类:二、随机变量的分类:三、随机变量的分布列:三、随机变量的分布列:1、分布列的性质、分布列的性质:2、求分布列的步骤、求分布列的步骤:定值定值 求概率求概率 列表列表182021作业:作业:课时练课时练P30-32、作业(十)、作业(十)192021

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服