收藏 分销(赏)

2025-2026学年湖南省三湘名校教育联盟高一数学第一学期期末调研试题含解析.doc

上传人:cg****1 文档编号:12793028 上传时间:2025-12-08 格式:DOC 页数:15 大小:859.50KB 下载积分:12.58 金币
下载 相关 举报
2025-2026学年湖南省三湘名校教育联盟高一数学第一学期期末调研试题含解析.doc_第1页
第1页 / 共15页
2025-2026学年湖南省三湘名校教育联盟高一数学第一学期期末调研试题含解析.doc_第2页
第2页 / 共15页


点击查看更多>>
资源描述
2025-2026学年湖南省三湘名校教育联盟高一数学第一学期期末调研试题 考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。 2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。 3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.采用系统抽样方法,从个体数为1001的总体中抽取一个容量为40的样本,则在抽取过程中,被剔除的个体数与抽样间隔分别为() A.1,25 B.1,20 C.3,20 D.3,25 2.已知方程的两根分别为、,且、,则 A. B.或 C.或 D. 3.若,都为正实数,,则的最大值是( ) A. B. C. D. 4.已知且,函数,满足对任意实数,都有成立,则实数的取值范围是(  ) A. B. C. D. 5.生物体死亡后,它机体内原有的碳14含量会按确定的比率衰减(称为衰减率),与死亡年数之间的函数关系式为(其中为常数),大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.若2021年某遗址文物出土时碳14的残余量约占原始含量的,则可推断该文物属于() 参考数据: 参考时间轴: A.宋 B.唐 C.汉 D.战国 6.下列各式不正确的是( ) A.sin(α+)=-sinα B.cos(α+)=-sinα C.sin(-α-2)=-sinα D.cos(α-)=sinα 7.已知,,满足,则( ) A. B. C. D. 8.已知平行四边形的对角线相交于点点在的内部(不含边界).若则实数对可以是 A. B. C. D. 9.下列不等式成立的是() A. B. C. D. 10.已知直线,平面满足,则直线与直线的位置关系是 A.平行 B.相交或异面 C.异面 D.平行或异面 二、填空题:本大题共6小题,每小题5分,共30分。 11.函数的单调递增区间是_________ 12.某网店根据以往某品牌衣服的销售记录,绘制了日销售量的频率分布直方图,如图所示,由此估计日销售量不低于50件的概率为________ 13.函数为奇函数,且对任意互不相等的,,都有成立,且,则的解集为______ 14.已知函数,若在上是增函数,且直线与的图象在上恰有一个交点,则的取值范围是________. 15.设函数=,则= 16.已知是定义在上的奇函数,且为偶函数,对于函数有下列几种描述: ①是周期函数; ②是它的一条对称轴; ③是它图象的一个对称中心; ④当时,它一定取最大值; 其中描述正确的是__________ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知,,. (1)求,的值; (2)若,求值. 18.已知函数. (1)若的图象恒在直线上方,求实数的取值范围; (2)若不等式在区间上恒成立,求实数的取值范围. 19.已知函数,函数的图像与的图像关于对称. (1)求的值; (2)若函数在上有且仅有一个零点,求实数k取值范围; (3)是否存在实数m,使得函数在上的值域为,若存在,求出实数m的取值范围;若不存在,说明理由. 20.若实数,,满足,则称比远离. (1)若比远离,求实数的取值范围; (2)若,,试问:与哪一个更远离,并说明理由. 21.如图,在四棱锥P-ABCD中,ABCD为平行四边形,AB⊥AC,PA⊥平面ABCD,且PA=AB=2,AC=1,点E是PD的中点. (1)求证:PB//平面AEC; (2)求D到平面AEC的距离. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、A 【解析】根据系统抽样的间隔相等,利用求出抽取过程中被剔除的个体数和抽样间隔 【详解】解:因为余1, 所以在抽取过程中被剔除的个体数是1; 抽样间隔是25 故选:A 2、D 【解析】将韦达定理的形式代入两角和差正切公式可求得,根据韦达定理可判断出两角的正切值均小于零,从而可得,进而求得,结合正切值求得结果. 【详解】由韦达定理可知:, 又, , 本题正确选项: 【点睛】本题考查根据三角函数值求角的问题,涉及到两角和差正切公式的应用,易错点是忽略了两个角所处的范围,从而造成增根出现. 3、D 【解析】由基本不等式,结合题中条件,直接求解,即可得出结果. 【详解】因为,都为正实数,, 所以, 当且仅当,即时,取最大值. 故选:D 4、D 【解析】根据单调性的定义可知函数在R上为增函数,即可得到,解出不等式组即可得到实数的取值范围 【详解】∵对任意实数,都有成立, ∴函数在R上为增函数, ∴,解得,∴实数的取值范围是 故选:D 5、D 【解析】根据给定条件可得函数关系,取即可计算得解. 【详解】依题意,当时,,而与死亡年数之间的函数关系式为, 则有,解得,于是得, 当时,,于是得:,解得, 由得,对应朝代为战国, 所以可推断该文物属于战国. 故选:D 6、B 【解析】将视为锐角,根据“奇变偶不变,符号看象限”得出答案. 【详解】将视为锐角, ∵在第三象限,正弦为负值,且是的2倍为偶数,不改变三角函数的名称,∴,A正确; ∵在第四象限,余弦为正值,且是的3倍为奇数数,要改变三角函数的名称,∴,B错误; ∵,在第四象限,正弦为负值,且0是的0倍为偶数,不改变三角函数的名称,∴,C正确; ∵在第四象限,余弦为正值,且是的1倍为奇数,要改变三角函数的名称,∴,D正确. 故选:B. 7、A 【解析】将转化为是函数的零点问题,再根据零点存在性定理即可得的范围,进而得答案. 【详解】解:因为函数在上单调递减,所以; ; 因为满足,即是方程的实数根, 所以是函数的零点, 易知函数f(x)在定义域内是减函数, 因为,, 所以函数有唯一零点,即. 所以. 故选:A. 【点睛】本题考查对数式的大小,函数零点的取值范围,考查化归转化思想,是中档题.本题解题的关键在于将满足转化为是函数的零点,进而根据零点存在性定理即可得的范围. 8、B 【解析】分析:根据x,y值确定P点位置,逐一验证. 详解:因为,所以P在线段BD上,不合题意,舍去; 因为,所以P在线段OD外侧,符合题意, 因为,所以P在线段OB内侧,不合题意,舍去; 因为,所以P在线段OD内侧,不合题意,舍去; 选B. 点睛:若,则三点共线,利用这个充要关系可确定点的位置. 9、A 【解析】由对数的单调性直接比较大小. 【详解】因为, , ,所以, 故选:A. 10、D 【解析】∵a∥α,∴a与α没有公共点,b⊂α,∴a、b没有公共点, ∴a、b平行或异面. 故选D 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】设 ,或 为增函数,在为增函数,根据复合函数单调性“同增异减”可知:函数单调递增区间是. 12、55 【解析】用减去销量为的概率,求得日销售量不低于50件的概率. 【详解】用频率估计概率知日销售量不低于50件的概率为1-(0.015+0.03)×10=0.55. 故答案为: 【点睛】本小题主要考查根据频率分布直方图计算事件概率,属于基础题. 13、 【解析】由条件可得函数的单调性,结合,分和利用单调性可解. 【详解】因为,时,,所以在上单调递减,又因为为奇函数,且,所以在上单调递减,且.当时,不等式,得;当时,不等式,得.综上,不等式的解集为. 故答案: 14、 【解析】由正弦函数的单调性以及图象的分析得出的取值范围. 【详解】因为在上是增函数,所以,解得 因为直线与的图象在上恰有一个交点,所以,解得,综上. 故答案为: 15、 【解析】由题意得, ∴ 答案: 16、①③ 【解析】先对已知是定义在的奇函数,且为偶函数用定义转化为恒等式,再由两个恒等式进行合理变形得出与四个命题有关的结论,通过推理证得①③正确. 【详解】因为为偶函数,所以, 即是它的一条对称轴; 又因为是定义在上的奇函数, 所以,即, 则,, 即是周期函数,即①正确; 因为是它的一条对称轴且, 所以()是它的对称轴,即②错误; 因为函数是奇函数且是以为周期周期函数, 所以,所以是它图象的一个对称中心, 即③正确; 因为是它的一条对称轴,所以当时,函数取得最大值或最小值, 即④不正确. 故答案为:①③. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1), (2) 【解析】(1)先求出,再由同角三角函数基本关系求解即可; (2)根据角的变换,再由两角差的余弦公式求解. 【小问1详解】 ∵,∴. ∵,∴, ∴,且,解得, ∴, 【小问2详解】 ∵,,∴, ∴, ∴ . 18、(1); (2). 【解析】(1)根据给定条件可得恒成立,再借助判别式列出不等式求解即得. (2)根据给定条件列出不等式,再分离参数,借助函数的单调性求出函数值范围即可推理作答. 【小问1详解】 因函数的图象恒在直线上方,即,, 于是得,解得, 所以实数的取值范围是:. 【小问2详解】 依题意,,, 令,, 令函数,,, ,而,即,, 则有,即,于是得在上单调递增, 因此,,,即,从而有,则, 所以实数的取值范围是. 19、(1) (2)或 (3)存在, 【解析】(1)由题意,将代入可得答案. (2)由题意即关于x的方程在上有且仅有一个实根,设,作出其函数图像,数形结合可得答案. (3)设记,则函数在上单调递增,根据题意若存在实数m满足条件,则a,b是方程的两个不等正根,由二次方程的根的分布的条件可得答案. 【小问1详解】 由题意,,所以 【小问2详解】 由题意即关于x的方程在上有且仅有一个实根, 设,作出函数在上的图像(如下图) ,,由题意,直线与该图像有且仅有一个公共点, 所以实数k的取值范围是或 【小问3详解】 记, 其中,在定义域上单调递增,则函数在上单调递增, 若存在实数m,使得的值域为, 则,即a,b是方程的两个不等正根, 即a,b是的两个不等正根, 所以解得,所以实数m的取值范围是. 【点睛】思路点睛:函数的零点问题可转化为两个熟悉函数的图象的交点问题来处理,而二次方程的零点问题,可结合判别式的正负、特殊点处的函数值的正负、对称轴的位置等来处理. 20、(1); (2)比更远离,理由见解析. 【解析】(1)由绝对值的几何意义可得,即可求的取值范围; (2)只需比较大小,讨论、分别判断代数式的大小关系,即知与哪一个更远离. 【小问1详解】 由比远离,则,即. ∴或,得:或. ∴的取值范围是. 【小问2详解】 因为,有, 因为,所以 从而, ①当时, ,即; ②当时, , 又,则 ∴,即 综上,,即比更远离 21、(1)证明见解析 (2) 【解析】(1)连接交于,连接,则可得,再由E是PD的中点,则可利用三角形中位线定理可得∥,然后利用线面平行的判定定理可证得结论; (2)由已知条件可证明,都为直角三角形,所以可求出,从而可求出的面积,然后利用等体积法可求出D到平面AEC的距离. 【小问1详解】 连接交于,连接, 因为四边形为平行四边形, 所以, 因为点E是PD的中点, 所以∥, 因为平面,平面, 所以∥平面, 【小问2详解】 因为∥,, 所以,, 因为平面,平面, 所以, 因为,、平面, 所以平面, 因为平面, 所以, 在直角中,, 同理, 在等腰中,, 取的中点,连接,则∥,, 因平面,所以平面,, 设D到平面AEC的距离为, 由,得 , 所以,得, 所以D到平面AEC距离为
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服