收藏 分销(赏)

啦啦平行四边形的面积教学案例.doc

上传人:pc****0 文档编号:9426270 上传时间:2025-03-25 格式:DOC 页数:5 大小:44.50KB
下载 相关 举报
啦啦平行四边形的面积教学案例.doc_第1页
第1页 / 共5页
啦啦平行四边形的面积教学案例.doc_第2页
第2页 / 共5页
点击查看更多>>
资源描述
《平行四边形的面积》教学案例 五数组 毛啦啦 教学内容:人教版小学数学教材五年级上册第87~88页例1及相关练习。 教学目标: 1.通过操作、观察、比较等活动,自主探索平行四边形面积计算公式,渗透转化思想。 2.能正确地应用公式计算平行四边形的面积。 教学重点:探索并掌握平行四边形面积计算公式。 教学难点:理解平行四边形面积计算公式的推导过程,体会转化思想。 教学准备:课件,一个框架式可以活动的平行四边形教具,为学生准备一张底为6 cm、高为4 cm的平行四边形纸张。 教学过程: 一、激趣引入 1.游戏。面积“比大小”:你能很快比较出下面每组图中阴影部分面积的大小吗? 你怎么知道它们的面积一样大的?(反馈重点:①数方格;②转化成长方形。) 2.(出示平行四边形)这个图形是?(平行四边形)。关于平行四边形,大家已经知道了哪些知识? 3.揭示课题:今天,这节课我们要来研究平行四边形的面积,谁能说说平行四边形的面积指的是哪部分呢? 【设计意图】转化的思想是推导平面图形面积计算方法的指导思想,作为本单元的起始课,通过面积“比大小”的游戏,让学生意识到不仅可以通过数方格来比较图形的大小,还可以通过剪拼转化成熟悉的图形进行大小比较,既富有趣味性,又能为新知的探究做好铺垫。 二、新知探究 (一)合理猜想 1.确实,由四条边围成的封闭图形的大小就是平行四边形的面积。那么同学们猜想一下,这个平行四边形的面积可能会怎么计算?并说说你的理由。 预设1:邻边相乘; 预设2:底边乘高。 2.同桌互相说一说,你同意哪一种猜想?理由是什么? 3.反馈想法。 预设1:长方形的面积是长乘宽,所以平行四边形的面积是底乘邻边。把平行四边形拉一拉就可以变成长方形。 预设2:用底边乘高来计算。可以通过剪一剪、拼一拼,把平行四边形转化为长方形,再计算面积。 (二)验证猜想 同学们都想到将平行四边形的面积转化成长方形的面积来计算,那么这两种方法有什么不同?哪种方法更合理呢? 1.邻边相乘的想法 教师:就让我们先来研究一下“拉”的方法。(出示教具)请看,我们再次慢慢地把原来的平行四边形拉成长方形,仔细观察拉动前后什么没有变,什么发生了变化? 学生:边的长短没变,高和面积变了。 教师追问:周长变了吗?面积变大了还是变小了?能在图上更直观地表示出来吗? 教师:现在谁能说说这种拉的方法合理吗?为什么? 教师小结:是的,在拉动前后平行四边形的面积与长方形的面积不相等。用底乘邻边算出的不是平行四边形的面积,而是拉动后的长方形的面积。所以用拉的方法计算平行四边形的面积是不正确的。 【设计意图】利用教具进行操作对比,让学生通过观察自觉修正自己的想法。 2.底边乘高的想法 (1)数格子验证 教师:这里的一些不是整格的怎么数? 学生:可以通过拼一拼,变成整格的再数。 教师:拼一拼后,就变成了什么形状?这个长方形的长和宽分别是多少?所以面积是多少? (2)剪拼验证 教师:谁来展示你是如何进行剪接的? 学生:沿高剪下,补到另一边,拼成长方形。 教师:拼成的是一个怎样的长方形?(长6 cm,宽4 cm) 那这个长方形的面积怎么算?(平行四边形的面积是24 cm2)。 【设计意图】让学生大胆提出假设,并让学生自主思考通过数格子、剪拼等实践操作进行验证。在操作反馈中,让他们在和同学、老师的交流过程中,展示自己的想法,完善自己的思考,对于知识的获取是很有益处的。 (三)公式推导 教师:仔细观察, 拼成的长方形的长和宽分别相当于原来的平行四边形中的哪两部分? 学生:长方形的长与平行四边形的底相等,长方形的宽与原来平行四边形的高相等。 教师:那么根据长方形的面积计算公式,平行四边形的面积该怎么计算呢? 教师:如果我们用表示平行四边形的面积,用表示平行四边形的底,用表示平行四边形的高,那么平行四边形的面积计算公式可以用来表示。 (四)回顾总结 回顾刚才的学习过程,谁能说说我们是怎样学习平行四边形的面积的计算方法的? 【设计意图】通过观察对比,让学生发现转化前后图形之间的相同点之后,沟通两个图形之间的内在联系,顺利地把新知转化为旧知,从而顺利推导出平行四边形面积的计算公式。 三、练习巩固 (一)基础练习 1.完成练习十九第1题。 (1)请学生计算,并进行订正。 (2)反馈小结:在计算时,可以先写出面积公式,再进行计算。 2.完成练习十九第2题。 (1)请学生计算,并进行反馈。 (2)反馈侧重:最后一小题引导学生注意找准相对应的底和高。教师还可以根据学生的学习情况进行补充练习。 【设计意图】教材本身就提供了多层次的练习,教师在这里进行合理选择,通过基础题、变化题练习,帮助学生进一步明确计算平行四边形面积所需要的条件,巩固所学的知识。 (二)拓展提升 一块平行四边形木板,底是4 cm ,高是3 cm 。它的面积是多少? 1.引导学生算出它的面积; 2.请学生在方格纸上画出这样的平行四边形; 3.教师:像这样的平行四边形你能画出多少个?(无数个)它们的面积相等吗?说说你的理由。 4.教师小结:是的,像这样的平行四边形剪拼之后都可以转化成一个长4 cm,宽3 cm 的长方形,它们的面积都相等。由此,可以得到等底等高的平行四边形面积一定相等。 5.思考:面积相等的平行四边形一定等底等高吗?为什么? 【设计意图】从“已知条件求面积”到“根据条件画图形”,让学生在画图反馈的过程中感受到“等底等高的平行四边形面积相等”,既提升了所学知识,又关注了学生的思考,培养学生的分析归纳能力。 四、总结提示 教师:回忆一下,今天这节课有什么收获? 总结:我们用把平行四边形转化成长方形的方法推导出了平行四边形的面积计算方法,这种转化的思想对于我们的数学学习很重要。 【设计意图】在本节课的最后,教师通过回忆帮学生把本节课得到的数学活动经验进行总结,引导学生在后续的学习中也利用转化的思想对图形的面积进行自主探索。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服