资源描述
函数概念复习
函数的概念:
基本函数及函数的定义域
函数名称
一次函数
二次函数
指数函数
对数函数
幂函数
解析式
定义域
分类(参数取值)
图
像
特殊点
值 域
单调性
奇函数定义及性质
偶函数的定义及性质
函数的概念:(2009北京文)已知函数 求f(f(1/2))= ; 若,则 . 答案
解析 本题主要考查分段函数和简单的已知函数值求的值. 属于基础知识、基本运算的考查.
由,无解,故应填.
例2:判断两个函数是否相同
例3.试判断以下各组函数是否表示同一函数?
(1)f(x)=,g(x)=;
(2)f(x)=,g(x)=
(3)f(x)=,g(x)=;
(4)f(x)=x2-2x-1,g(t)=t2-2t-1。
解:(1)由于f(x)==|x|,g(x)==x,故它们的值域及对应法则都不相同,所以它们不是同一函数;
(2)由于函数f(x)=的定义域为(-∞,0)∪(0,+∞),而g(x)=的定义域为R,所以它们不是同一函数;
(4)由于函数f(x)=的定义域为{x|x≥0},而g(x)=的定义域为{x|x≤-1或x≥0},它们的定义域不同,所以它们不是同一函数;
(5)函数的定义域、值域和对应法则都相同,所以它们是同一函数
点评:对于两个函数y=f(x)和y=g(x),当且仅当它们的定义域、值域、对应法则都相同时,y=f(x)和y=g(x)才表示同一函数若两个函数表示同一函数,则它们的图象完全相同,反之亦然。
(1)第(5)小题易错判断成它们是不同的函数,原因是对函数的概念理解不透要知道,在函数的定义域及对应法则f不变的条件下,自变量变换字母,以至变换成其他字母的表达式,这对于函数本身并无影响,比如f(x)=x2+1,f(t)=t2+1,f(u+1)=(u+1)2+1都可视为同一函数。(2)对于两个函数来讲,只要函数的三要素中有一要素不相同,则这两个函数就不可能是同一函数
例3.求下述函数的定义域:
(1);
解:(1),解得函数定义域为.
例4.已知函数定义域为(0,2),求下列函数的定义域:
(1) g(x)=;(2)。
解:(1)由0<x<2, 得
点评:本例不给出f(x)的解析式,即由f(x)的定义域求函数f[g(x)]的定义域关键在于理解复合函数的意义,用好换元法;求函数定义域的第三种类型是一些数学问题或实际问题中产生的函数关系,求其定义域,后面还会涉及到
变式题:已知函数f(x)=的定义域是R,则实数a的取值范围是( )
A.a> B.-12<a≤0 C.-12<a<0 D.a≤
解:由a=0或可得-12<a≤0,答案B。
例11.(1)函数的定义域是( )
A. B. C. D.
(2)(2006湖北)设f(x)=,则的定义域为( )
A. B.(-4,-1)(1,4)
C.(-2,-1)(1,2) D.(-4,-2)(2,4)
解:(1)D(2)B。
点评:求函数定义域就是使得解析是有意义的自变量的取值范围,在对数函数中只有真数大于零时才有意义。对于抽象函数的处理要注意对应法则的对应关系。
5.(2009山东卷理)定义在R上的函数f(x)满足f(x)= ,
则f(2009)的值为 ( )
A.-1 B. 0 C.1 D. 2
答案 C
解析 由已知得,,,
,,
,,,
所以函数f(x)的值以6为周期重复性出现.,所以f(2009)= f(5)=1,故选C.
【命题立意】:本题考查归纳推理以及函数的周期性和对数的运算.
16.(2009江西卷文)函数的定义域为 ( )
A. B. C. D.
答案 D
解析 由得或,故选D.
19.(2009江西卷理)函数的定义域为 ( )
A. B. C. D.
答案 C
解析 由.故选C
25.(2009四川卷文)已知函数是定义在实数集R上的不恒为零的偶函数,且对任意实数都有
,则的值是 ( )
A. 0 B. C. 1 D.
答案 A
解析 若≠0,则有,取,则有:
(∵是偶函数,则
)由此得于是
38.(2009福建卷文)下列函数中,与函数 有相同定义域的是 ( )
A . B. C. D.
答案 A
解析 解析 由可得定义域是的定义域;的定义域是≠0;的定义域是定义域是。故选A.
1.(2008年山东文科卷)设函数则的值为( )
A. B. C. D.
答案 A
5.(07安徽)图中的图象所表示的函数的解析式为 ( )
A. (0≤x≤2)
B. (0≤x≤2)
C. (0≤x≤2)
D. (0≤x≤2)
答案 B
8.(2007年上海)函数的定义域是 .
答案
2.(2009龙岩一中)函数的定义域是 ( )
A. B. C. D.
答案 B
15.(北京市石景山区2009年4月高三一模理)函数,则,若,则实数的取值范围是
答案
展开阅读全文