1、104DOI:10.11973/jxgccl202311017MATERIALSFOR MECHANICAL ENGINEERINGVol.47 No.11 Nov.20232023年11月第47 卷第11期2023机械工程材料大层厚下选区激光熔化成形316 L不锈钢工艺的优化夏涛,胡海霞(安徽理工大学机械工程学院,淮南2 32 0 0 1)摘要:在铺粉厚度为0.15mm的大层厚条件下采用选区激光熔化技术制备316 L不锈钢试样,研究了激光功率(7 50 8 50 W)、扫描速度(8 0 0 10 0 0 mms-1)、扫描间距(0.0 6 0.10 mm)对其相对密度、显微组织与性能的影响,
2、对选区激光熔化工艺进行了优化。结果表明:随着激光功率、扫描速度或扫描间距的增大,大层厚下成形试样的相对密度都呈先增大再减小的变化趋势。当激光功率为8 0 0 W、扫描速度为9 0 0 mms-1、扫描间距为0.0 8 mm时,成形试样的拉伸性能最优,其抗拉强度和断后伸长率分别为6 8 2.7 MPa和33.4%,与小层厚成形试样相近,此时的显微硬度为224.77HV,显微组织由尺寸为0.4 1.0 m的等轴晶组成,在质量分数3.5%NaCl溶液中的自腐蚀电位达到一0.6 9 V,表现出最优的耐腐蚀性能。关键词:选区激光熔化;316 L不锈钢;工艺参数;相对密度;大层厚中图分类号:TN249文献
3、标志码:A文章编号:10 0 0-37 38(2 0 2 3)11-0 10 4-0 7Process Optimization of Selective Laser Melting Formed316L Stainless Steel under Large Layer ThicknessXIA Tao,HU Haixia(College of Mechanical Engineering,Anhui University of Science and Technology,Huainan 232001,China)Abstract:316L stainless steel samples
4、were prepared by selective laser melting under the condition of largelayer thickness with powder thickness of 0.15 mm.The effects of laser power(750-850 W),scanning speed(800-1 000 mms-)and scanning spacing(0.0 6 -0.10 mm)o n t h e r e l a t i v e d e n s i t y,mi c r o s t r u c t u r e a n dproper
5、ties of 316L stainless steel were studied,and the selective laser melting process was optimized.The resultsshow that with the increase of laser power,scanning speed or scanning spacing,the relative density of the formedsamples with large layer thickness all increased first and then decreased.When th
6、e laser power was 800 W,thescanning speed was 900 mm s-,and the scanning spacing was 0.08 mm,the tensile properties of the formedsample were the best,and the tensile strength and the percentage elongation after fracture were 682.7 MPa and33.4%,respectively,which were close to those of the small laye
7、r thickness formed sample.Meanwhile,themicrohardness was 224.77 HV,and the microstructure was composed of equiaxed grains with size of 0.4-1.0 m;thefree-corrosion potential in 3.5wt%NaCl solution reached-0.69 V,showing the best corrosion resistance.Key words:selective laser melting;316L stainless st
8、eel;process parameter;relative density;large layerthickness0引言选区激光熔化(selective lasermelting,SL M)技术采用激光作为热源,在粉床的特定区域将金属收稿日期:2 0 2 3-0 4-2 9;修订日期:2 0 2 3-10-16基金项目:安徽省新时代育人质量工程项目(2 0 2 2 zyxwjxalk084)作者简介:夏涛(19 9 8 一),男,安徽六安人,硕士研究生导师:胡海霞副教授粉末熔化并快速凝固成形为实体零部件,其在打印效率和材料利用率等方面占据优势,在复杂结构件的制造方面与传统加工技术相比具有加
9、工周期更短的优势,并有着更大的发展潜力1-3。316 L不锈钢是一种奥氏体不锈钢,具有优异的耐腐蚀性能、延展性和生物相容性 幻,已成为金属增材制造中广泛使用的材料之一。国内外研究人员在探讨SLM成形316L不锈钢的性能时主要集中在小层厚(低于105MATERIALS FOR MECHANICALENGINEERING夏涛,等:大层厚下选区激光熔化成形316 L不锈钢工艺的优化2023机械工程材料0.1 mm)打印方面 5-7 。CHERRY等 8 研究了0.05mm层厚下的SLM工艺,成形了最高相对密度为9 9.6 2%的工件;MA等 9 研究发现,不同层厚(0.060.10 mm)下SLM成
10、形工件的相对密度在99.3%99.8%;SU N等 10 研究发现,0.0 3mm层厚下SLM成形件垂直面的显微硬度略高于平行面。采用小层厚成形的工件表面精度高,但是成形效率低。大层厚成形工件虽然表面精度不高,但是相对于小层厚成形工件,理论上的成形效率可以提高2 3倍,因此大层厚SLM成形工艺在一些精度要求相对不高的大型工件生产中具有一定的应用潜力,而目前国内外在高效率大层厚成形方面的研究并不多。为此,作者在0.15mm大层厚工艺下研究了激光功率、扫描速度、扫描间距对SLM成形316 L不锈钢显微组织、力学性能和电化学性能的影响,获得最优工艺参数,以期为提高大型工件的打印效率提供试验参考。1试
11、样制备与试验方法试验原料为江苏威拉里新材料科技有限公司提供的316 L不锈钢粉末,化学成分如表1所示;粉末粒径范围为2 0 6 1m,平均粒径为35m,其微观形貌如图1所示,可观察到一些卫星粉和不规则形状粉末的存在。表1316 L不锈钢粉末的化学成分Table 1Chemical composition of 316L stainless steel powder元素CSPSiMnMoNiCrFe质量分数/%0.0150.0070.0110.691.312.5611.2517.13余100m图1316L不锈钢粉末的SEM形貌Fig.1SEM morphology of 316L stainle
12、ss steel powder采用TB-PBFM600型金属3D打印机成形尺寸为15mmX15mm15mm的块状试样以及如图2 所示的拉伸试样,该设备配备的光纤激光器波长为10 6 4nm,最大功率为10 0 0 W。在SLM成形过程中除了粉末质量(如流动性、封装密度、尺寸、形状及分布等)、扫描策略外,激光功率P、扫描速度u、扫描间距d和铺粉厚度t等工艺参数将会对成形件的表面质量、力学性能等产生重要影响。为了更好地定量评价不同工艺参数组合下成形件的质量,定义了体能量密度参数E,其计算公式1为E=P/(udt)(1)在试验中将铺粉厚度定为0.15mm,激光功率(6 50 8 50 W)、扫描速度
13、(7 0 0 10 0 0 mm?s-l)、扫描55780图2拉伸试样的尺寸Fig.2Size of tensile specimen间距(0.0 6 0.12 mm)作为变量,通过单因素试验获得较优的工艺参数范围,选择相对密度较高的4组试样进行显微组织和性能研究。SLM成形时的保护气体为氮气,扫描策略为如图3所示的棋盘扫描模式。图3扫描策略示意Fig.3Schematic of scanning strategy采用AR-300ME型多功能密度测量仪通过阿基米德排水法测相对密度。按照GB/T228.1一2021,采用DSC-10型电子万能试验机对拉伸试样进行室温拉伸试验,拉伸速度为1mmmi
14、n-1,在Coxem-EM30AXPLUS型扫描电镜(SEM)下观察拉伸断口形貌。块状试样经粗磨、细磨、抛光以及用由5g三氯化铁、50 mL盐酸、10 0 mL水组成的三氯化铁盐酸溶液腐蚀后,采用DM-400C型光学显微镜观察平行于打印方向的显微组织。采用MHVS-1000Z型数显显微硬度计测显微硬度,载荷为10 N,保载时间为10 s,测10 次取平均值。采用CS150H型电化学工作站对成形试样的电化学性能进行测试,采用三电极体系,辅助电极为铂电极,参比电极为饱和甘汞电极(SCE),工作电极为经过抛光处理的块状试样,试验温度为室温,试验介质为质106MATERIALSFOR MECHANIC
15、AL ENGINEERING夏涛,等:大层厚下选区激光熔化成形316 L不锈钢工艺的优化2023机械工程材料量分数3.5%NaCl溶液,在腐蚀开路电位下保持500s后获得极化曲线。2试验结果与讨论2.1相对密度由图4可知,在扫描间距和扫描速度一定的条件下,随着激光功率的增加,成形试样的相对密度先增后降,当激光功率为8 0 0 W时,相对密度达到最大值,为9 9.5%。这是由于在层厚较大的情况下,当激光功率较低时,粉末未能完全熔化,从而在试样表面形成一些颗粒,如图5(a)所示,这些颗粒会导致孔隙的生成,因此相对密度较低;增加激光功率后,未熔颗粒数量减少,因此相对密度提高;但是当99.6斤扫描速度
16、8 0 0 mm?s-1扫描间距0.0 8 mm99.599.499.399.299.199.098.9600650700750800850900激光功率/W图4成形试样的相对密度随激光功率的变化曲线Fig.4Curves of relative density vs laser power of formed sample激光功率过高时,又会产生过熔现象,使得试样表面产生凸起,并且会附着一些温度过高导致的飞溅颗粒,如图5(b)所示,从而导致相对密度降低未熔颗粒1mm1mm(a)650W(b)850W图5不同激光功率下成形试样的微观形貌(扫描速度8 0 0 mms-1、扫描间距0.0 8 mm
17、)Fig.5Micromorphology of formed samples at different laser powers(scanning speed of 800 mm-s-1 and scanning spacing of 0.08 mm)由图6 可知,在激光功率和扫描间距一定的条件下,随着扫描速度的增大,成形试样的相对密度呈先增后降的变化趋势,当扫描速度为9 0 0 mms-1时,相对密度达到最大,为9 9.9%。在低扫描速度下,激光照射在粉末上使粉末熔化产生的熔池温度过高,形成较大的温度梯度,导致液相的表面张力梯度增大,从而形成大量飞溅液滴,如图7 a)所示;这些液滴冷却后形
18、成颗粒,因此试样相对密度较低。提高扫描速度能减少飞溅,但是过高的扫描速度会导致粉末未完全熔化,未熔粉末颗粒附着在试样表面,如图7(b)所示,从而导致相对密度下降。由图8 可知,在激光功率和扫描速度一定的条件100.0激光功率8 0 0 W扫描间距0.0 8 mm99.999.899.799.699.57008009001000扫描速度/(mm-s-)图6成形试样的相对密度随扫描速度的变化曲线Fig.6Curves of relative density vs scanning speed offormed samples下,随着扫描间距的增大,成形试样的相对密度呈先增后降的变化趋势。当扫描间距
19、为0.0 8 mm时,相对飞溅液滴未熔颗粒1mmmm(a)700 mms-1(b)1 000 mms-1图7不同扫描速度下成形试样的微观形貌(激光功率8 0 0 W、扫描间距0.0 8 mm)Fig.7Micromorphology of formed samples at different scanning speeds(laser power of 800 W and scanning spacing of 0.08 mm)107MATERIALS FORMECHANICAL ENGINEERING夏涛,等:大层厚下选区激光熔化成形316 L不锈钢工艺的优化2023机械工程材料100.0
20、激光功率8 0 0 W扫描速度9 0 0 mms-199.899.699.499.20.060.080.100.12扫描间距/mm图:成形试样的相对密度随扫描间距的变化曲线Fig.8 Curves of relative density vs scanning spacingofformed samples密度达到最大,近乎10 0%。在扫描间距为0.0 6 mm时,搭接率达到50%,此时试样的表面会产生过熔,从而形成孔隙,如图9(a)所示。当扫描间距过大时,光斑之间搭接不紧密,会导致试样表面产生孔洞,如图9(b)所示,因此相对密度下降。综上可知,激光功率、扫描速度、扫描间距分别在7 50 8
21、 50 W,80010 0 0 m m s-1,0.060.10mm为宜。对不同工艺参数组合后的成形试样的相对密度进行对比,得到4组相对密度较高的工艺参数组合,具体如表2 所示,表2优化后的成形工艺参数、体能量密度和相对密度Table2Forming process parameters,bulk energy densityand relative density after optimization激光功率/扫描速度/扫描间距/体能量密相对密度/试样W(mmas-1)mm度/Jmm=3)%17509000.1055.5599.6280010000.0866.6799.138009000.0
22、874.07100.048508000.06118.0699.82.2显微组织和力学性能对采用优化后的成形工艺制备的试样的组织、力学性能和电化学性能进行研究。由图10 可以看间隙1mm1mm(a)0.06 mm(b)0.12 mm图9不同扫描间距下成形试样的微观形貌(激光功率8 0 0 W、扫描速度9 0 0 mms-1)Fig.9 Micromorphology of formed samples at different scanning spacings(laser power of 800 W and scanning speed of 900 mms-1)孔隙裂纹50um50um(a
23、)55.55Jmm-3(b)66.67 Jmm-3柱状晶等轴晶弧形熔合线50m50um(c)74.07 Jmm=3(d)118.06 Jmm-3图10 不同体能量密度下成形试样平行于打印方向的显微组织Fig.10Microstructures parallel to the printing direction of formed samples at different bulk energy densities108MATERIALS FOR MECHANICAL ENGINEERING夏涛,等:大层厚下选区激光熔化成形316 L不锈钢工艺的优化机械工程材料出,不同体能量密度下成形试样的显
24、微组织主要由等轴晶和柱状晶组成成 12-13。当体能量密度为55.55Jmm时,试样的组织主要为尺寸0.51.2 m的等轴晶,同时还存在少量柱状晶;试样内部存在较多的大孔洞,这是因为当体能量密度不足时,粉末熔化不充分,会导致更多的非球形孔洞出现 141。当体能量密度为6 6.6 7 Jmm-时,试样组织主要为尺寸为0.30.5m的等轴晶,同时还存在一些细小的裂纹,这是由于粉末在熔化和凝固的过程中,液、固相变导致体积发生变化而在熔池附近产生残余应力,当该应力大于材料的极限强度时便会形成裂纹 15。当体能量密度为7 4.0 7 Jmm-3时,试样组织主要由大量尺寸为0.41.0 m的等轴晶组成,当
25、体能量密度为118.0 6 Jmm-3时,则主要由等轴晶和柱状晶组成,其中等轴晶的尺寸为0.40.6 m。体能量密度越高,熔池凝固后的弧形熔合线越明显 16 。根据图11的拉伸工程应力-应变曲线可得到,成形试样的抗拉强度在6 2 36 8 2 MPa,断后伸长率在24.3%33.4%。当体能量密度为7 4.0 7 Jmm-3时,成形试样的抗拉强度和断后伸长率均最大,分别为682.7MPa和33.4%,其抗拉强度高于ASTMA473-13标准中锻件的450 MPa。较高的强度和塑性是因为SLM成形试样中的等轴晶力学性能方向性小,有利于提高抗拉强度,柱状晶力学性能具有很明显的方向性,其纵向具有良好
26、的塑性17 。由表3可以发现,大层厚下SLM成形试样的拉伸性能与小层厚下的力学性能相近,这主要是因为二者具有相似的显微组织和冶金结合 18 70060050040030055.55Jmm-320066.67J.mm-374.07Jmm-3100118.06Jmm-301104812162024283236应变/%图11不同体能量密度下成形试样的拉伸工程应力-应变曲线Fig.11Tensile engineering stress-strain curves of formed samplesat different bulk energy densities表3不同层厚下SLM成形试样的拉伸性
27、能Table3Tensile properties of SLM formed specimensunder different layer thicknesses层厚/mm抗拉强度/MPa断后伸长率/%参考文献0.0368025190.0562518200.1077040210.15682.733.4由图12 可以看到:试样拉伸断口中均存在韧窝,且一些韧窝中存在第二相粒子。可知,试样的断裂类型均为韧性断裂。当体能量密度为7 4.0 7 Jmm-3时,韧窝的尺寸在50 8 0 m,比体能量密度为55.55,6 6.6 7,118.0 6 Jmm-3时产生的韧窝尺寸100um100um(a)55
28、.55 Jmm-3(b)66.67 Jmm-3100um100um(c)74.07 Jmm-3(d)118.06 Jmm-3图12不同体能量密度下成形试样的拉伸断口SEM形貌Fig.12SEM morphology of tensile fracture of formed specimens at different bulk energy densities109MATERIALS FORMECHANICAL ENGINEERING夏涛,等:大层厚下选区激光熔化成形316 L不锈钢工艺的优化2023机械工程材料更大,说明该体能量密度成形试样的塑性最好。当体能量密度为55.55,6 6.6
29、7,7 4.0 7,118.0 6 Jmm3时,成形试样的硬度分别为2 2 1.17,2 35.44,224.77,211.75HV;硬度随着体能量密度的增大呈先升后降的变化趋势。根据Hall-Petch公式,致密金属材料的晶粒越细小,其硬度越高。当体能量密度为118.0 6 Jmm-时,成形试样中存在大量柱状晶,平均晶粒尺寸相对较大,因此其硬度最低。当体能量密度为6 6.6 7 Jmm-3时,试样组织中等轴晶尺寸最小,为0.30.5m,尺寸较大的柱状晶较少,所以硬度最高。2.3电化学性能由图13中的极化曲线可以看出,当体能量密度为55.55,6 6.6 7,7 4.0 7,118.0 6 J
30、mm-3时,成形试样的自腐蚀电位分别为1.0 5,一0.9 2,一0.6 9,一0.7 4V。在体能量密度为7 4.0 7 Jmm-时,成形试样的自腐蚀电位最高,产生的钝化膜稳定性最好,耐腐蚀性能最好,这是由于该试样主要由致密的等轴晶组成,在电化学腐蚀过程中其表面生成了更加稳定的钝化膜;当体能量密度为55.55Jmm3时,试样的自腐蚀电位最低,这是由于该试样中存在大量孔隙,在腐蚀的过程中,腐蚀面积较大,且腐蚀物质更容易进入材料内部。212433-451.55.55 J mm-3-62.66.67 J mm-33.74.07 Jmm-3-74.118.06 Jmm-3-81.2-0.8-0.40
31、电极电位V图13不同体能量密度下成形试样的极化曲线Fig.13Polarization curves of formed samples at differentbulk energy densities3结 论(1)随着激光功率、扫描速度或扫描间距的增大,0.15mm层厚下SLM成形试样的相对密度都呈先增大再减小的变化趋势,激光功率、扫描速度、扫描间距的较优范围为7 50 8 50 W,8 0 0 1 000 mms-1,0.060.10 mm。(2)当激光功率为8 0 0 W、扫描速度为9 0 0 mm?s-1、扫描间距为0.0 8 mm时,成形试样的拉伸性能和耐腐蚀性能最好,其抗拉强度和
32、断后伸长率分别为6 8 2.7 MPa和33.4%,与小层厚成形试样相近,自腐蚀电位为一0.6 9 V,显微硬度为2 2 4.7 7 HV,显微组织主要由尺寸为0.41.0 m的等轴晶组成。参考文献:1卢秉恒,李涤尘.增材制造(3D打印)技术发展J.机械制造与自动化,2 0 13,42(4):1-4.LU B H,LI D C.Development of the additive manufacturing(3D p r i n t i n g)t e c h n o l o g y JJ.M a c h i n e Bu i l d i n g&Automation,2013,42(4):
33、1-4.2杨强,鲁中良,黄福享,等.激光增材制造技术的研究现状及发展趋势J.航空制造技术,2 0 16,59(12):2 6-31.YANG Q,LU Z L,HUANG F X,et al.Research status anddevelopment trend of laser additive manufacturing technologyJJ.Aeronautical Manufacturing Technology,2016,59(12):26-31,3张学军,唐思熠,肇恒跃,等.3D打印技术研究现状和关键技术J.材料工程,2 0 16,44(2):12 2-12 8.ZHANG
34、X J,TANG S Y,ZHAO H Y,et al.Research statusand key technologies of 3D printingJ.Journal of MaterialsEngineering,2016,44(2):122-128.4ALMANGOUR B A.Additive manufacturing of high-performance 316L stainless steel nanocomposites via selectivelaser meltingDJ.Los Angeles:UCLA,2017.5HITZLER L,HIRSCH J,HEIN
35、E B,et al.On the anisotropicmechanical properties of selective laser-melted stainles steelJJ.Materials,2017,10(10):1136.6HONG Y J,ZHOU C S,ZHENG Y Y,et al.The cellularboundary with high density of dislocations governed thestrengthening mechanism in selective laser melted 316Lstainless steelJJ.Materi
36、als Science and Engineering:A,2021,799:140279.7苏正夫.铁粉激光直接成形温度场数值模拟 J.矿冶工程,2013,33(6):103-106.SU Z F.Numerical simulation of temperature field for laserdirect forming of iron power J.Mining and MetallurgicalEngineering,2013,33(6):103-106.8CHERRY J A,DAVIES H M,MEHMOOD S,et al.Investigation into the e
37、ffect of process parametersonmicrostructural and physical properties of 316L stainless steelparts by selective laser meltingJJ.The International Journalof Advanced Manufacturing Technology,2015,76(5):8 6 9-879.9MA M,WANG Z,GAO M,et al.Layer thickness dependenceof performance in high-power selective
38、laser melting of1Cr18Ni9Ti stainless steelJJ.Journal of Materials ProcessingTechnology,2015,215(1):142-150.10SUN Z,TAN X,SHU B T,et al.Selective laser melting ofstainless steel 316L,with low porosity and high build ratesJJ.Materials&.Design,2016,104;197-204.110(上接第10 3页)MATERIALSFOR MECHANICAL ENGIN
39、EERING夏涛,等:大层厚下选区激光熔化成形316 L不锈钢工艺的优化2023机械工程材料11BI J,LEI Z L,CHEN Y,et al.Effect of process parameters onformability and surface quality of selective laser melted Al-Zn-Sc-Zr alloy from single track to block specimenJ.Optics&Laser Technology,2019,118:132-139.12GRAY G T,LIVESCU V,RIGG P A,et al.Struc
40、ture/property(constitutive and spallation response)of additivelymanufactured 316L stainless steelJ.Acta Materialia,2017,138:140-149.13尹燕,刘鹏宇,路超,等.选区激光熔化成形316 L不锈钢微观组织及拉伸性能分析J.焊接学报,2 0 18,39(8):7 7-8 1.YIN Y,LIU P Y,LU C,et al.Microstructure and tensileproperties of selective laser melting forming 31
41、6L stainlesssteelJJ.Transactions of the China Welding Institution,2018,39(8):77-81.14DE TERRIS T,A ND ER EA U O,PEY R E P,e t a l.Optimization and comparison of porosity rate measurementmethods of selective laser melted metallic partsJ.AdditiveManufacturing,2019,28:802-813.15DEBROY T,WEI H L,ZUBACK
42、J S,et al.Additivemanufacturing of metallic components:Process,structure andpropertiesJJ.Progress in Materials Science,2018,92:112-224.16TOMASZ K,KONRAD G,WOJCIECH S,et al.Correlationbetween process parameters,microstructure and properties of316L stainless steel processed by selective laser meltingJ
43、.21张霜银.激光快速成形TC4钛合金的组织和力学性能研究D.西安:西北工业大学,2 0 0 6.ZHANG S Y.Study on microstructure and mechanicalproperties of TC4 titanium alloy by laser rapid formingD.Xian:Northwestern Polytechnical University,2006.22李伟,金头男,方晓英,等.激光扫描速度对选区激光熔化TC4钛合金组织和性能的影响 J.热加工工艺,2 0 2 3,52(1):28-32.LI W,JIN T N,FANG X Y,et al
44、.Effect of laser scanningspeed on microstructure and properties of TC4 titanium alloymelted by selective laserJJ.Hot Working Technology,2023,52(1):28-32.23吴启锐。选区激光熔化成形316 L不锈钢多孔结构的力学性能及生物相容性研究 D.福州:福建工程学院,2 0 2 1.WU Q R.Studyon mechanical propertiessandbiocompatibility of porous 316L stainless steel
45、 formed byselective laser melting D.Fuzhou:Fujian University ofTechnology,2021.24ZHU Y Y,TANG H B,LI Z,et al.Solidification behaviorand grain morphology of laser additive manufacturingtitanium alloysJJ.Journal of Alloys and Compounds,2019,777:712-716.25WANG T,ZHU Y Y,ZHANG S Q,et al.Grainmorphology
46、evolution behavior of titanium alloy componentsduring laser melting deposition additive manufacturing JJ.Materials Science and Engineering:A,2018,718:64-73.17张飞飞,刘玉德,石文天,等.选区激光熔化不同层厚316 L不锈钢的微观形貌及性能 J.铸造技术,2 0 18,39(12):2 7 0 7-2 7 11.ZHANG F F,LIU Y D,SHI W T,et al.Study onmicrostructure and proper
47、ties of 316L with differentthickness by selective laser meltingJJ.Foundry Technology,2018,39(12):2707-2711.18王硕,刘玉德,祁斌,等.选区激光熔化316 L大层厚成形工艺及性能研究J.应用激光,2 0 17,37(6):8 0 1-8 0 7.WANG S,LIU Y D,QI B,et al.Study on the forming processand performance of 316L high layer thickness by selectivelaser melting
48、JJ.Applied Laser,2017,37(6):801-807.19SURYAWANSHI J,PRASHANTH K G,RAMAMURTYU.Mechanical behavior of selective laser melted 316L.stainless steel JJ.Materials Science and Engineering:A,2017,696:113-121.20ZHANG B,DEMBINSKI L,CODDET C.The study of thelaser parameters and environment variables effect onm
49、echanical properties of high compact parts elaborated byselective laser melting 316L powderJJ.Materials Science andEngineering:A,2013,584:21-31.21GUO P,ZOU B,HUANG C,et al.Study on microstructure,mechanical properties and machinability of efficiently additivemanufactured AISI 316L JJ.Journal of Mate
50、rials ProcessingTechnology,2017,240:12-22.Journal of Alloys and Compounds,2015,632:505-513.26SIMONELLI M,TSE Y Y,TUCK C.The formation of+microstructure in as-fabricated selective laser melting of Ti-6Al-4VJJ.Journal of Materials Research,2014,29(17):2028-2035.27THIJS L,VERHAEGHE F,CRAEGHS T,et al.A