收藏 分销(赏)

高考复习全国普通高等学校招生统一考试上海数学试卷理工农医类.doc

上传人:可**** 文档编号:906193 上传时间:2024-04-07 格式:DOC 页数:11 大小:541.50KB 下载积分:10 金币
下载 相关 举报
高考复习全国普通高等学校招生统一考试上海数学试卷理工农医类.doc_第1页
第1页 / 共11页
高考复习全国普通高等学校招生统一考试上海数学试卷理工农医类.doc_第2页
第2页 / 共11页


点击查看更多>>
资源描述
2006年全国普通高等学校招生统一考试 上海 数学试卷(理工农医类) 考生注意: 1.答卷前,考生务必将姓名、高考准考证号、校验码等填写清楚. 2.本试卷共有22道试题,满分150分,考试时间120分钟.请考生用钢笔或圆珠笔将答案直接写在试卷上. 一.填空题(本大题满分48分)本大题共有12题,只要求直接填写结果,每个空格填对得4分,否则一律得零分. 1.已知集合A=-1,3,2-1,集合B=3,.若BA,则实数= . 2.已知圆-4-4+=0的圆心是点P,则点P到直线--1=0的距离是 . 3.若函数=(>0,且≠1)的反函数的图像过点(2,-1),则= . 4.计算:= . 5.若复数同时满足-=2,=(为虚数单位),则= . 6.如果=,且是第四象限的角,那么= . 7.已知椭圆中心在原点,一个焦点为F(-2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 . 8.在极坐标系中,O是极点,设点A(4,),B(5,-),则△OAB的面积是 . 9.两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是 (结果用分数表示). 10.如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是 . 11.若曲线=||+1与直线=+没有公共点,则、分别应满足的条件是 . 12.三个同学对问题“关于的不等式+25+|-5|≥在[1,12]上恒成立,求实数的取值范围”提出各自的解题思路. 甲说:“只须不等式左边的最小值不小于右边的最大值”. 乙说:“把不等式变形为左边含变量的函数,右边仅含常数,求函数的最值”. 丙说:“把不等式两边看成关于的函数,作出函数图像”. 参考上述解题思路,你认为他们所讨论的问题的正确结论,即的取值范围是 . 二.选择题(本大题满分16分)本大题共有4题,每题都给出代号为A、B、C、D的四个结论,其中有且只有一个结论是正确的,必本大题满分16分)须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分. A B C D 13.如图,在平行四边形ABCD中,下列结论中错误的是 [答]( ) (A)=;(B)+=; (C)-=;(D)+=. 14.若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的 [答]( ) (A)充分非必要条件;(B)必要非充分条件;(C)充要条件;(D)非充分非必要条件. 15.若关于的不等式≤+4的解集是M,则对任意实常数,总有[答]( ) (A)2∈M,0∈M; (B)2M,0M; (C)2∈M,0M; (D)2M,0∈M. O M(,) 16.如图,平面中两条直线和相交于点O,对于平面上任意一点M,若、分别是M到直线和的距离,则称有序非负实数对(,)是点M的“距离坐标”.已知常数≥0,≥0,给出下列命题: ①若==0,则“距离坐标”为(0,0)的点 有且仅有1个; ②若=0,且+≠0,则“距离坐标”为 (,)的点有且仅有2个; ③若≠0,则“距离坐标”为(,)的点有且仅有4个. 上述命题中,正确命题的个数是 [答]( ) (A)0; (B)1; (C)2; (D)3. 三.解答题(本大题满分86分)本大题共有6题,解答下列各题必须写出必要的步骤. 17.(本题满分12分) 求函数=2+的值域和最小正周期. [解] 18.(本题满分12分) 如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到1)? 北 20 10 A B • •C [解] 19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分) P A B C D O E 在四棱锥P-ABCD中,底面是边长为2的菱形,∠DAB=60,对角线AC与BD相交于点O,PO⊥平面ABCD,PB与平面ABCD所成的角为60. (1)求四棱锥P-ABCD的体积; (2)若E是PB的中点,求异面直线 DE与PA所成角的大小(结果用反 三角函数值表示). [解](1) (2) 20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分) 在平面直角坐标系O中,直线与抛物线=2相交于A、B两点. (1)求证:“如果直线过点T(3,0),那么=3”是真命题; (2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由. [解](1) (2) 21.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分) 已知有穷数列共有2项(整数≥2),首项=2.设该数列的前项和为,且=+2(=1,2,┅,2-1),其中常数>1. (1)求证:数列是等比数列; (2)若=2,数列满足=(=1,2,┅,2),求数列的通项公式; (3)若(2)中的数列满足不等式|-|+|-|+┅+|-|+|-|≤4,求的值. [解](1) (2) (3) 22.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分) 已知函数=+有如下性质:如果常数>0,那么该函数在0,上是减函数,在,+∞上是增函数. (1)如果函数=+(>0)的值域为6,+∞,求的值; (2)研究函数=+(常数>0)在定义域内的单调性,并说明理由; (3)对函数=+和=+(常数>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数=+(是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论). [解](1) (2) (3) 上海数学(理工农医类)参考答案 一、(第1题至笫12题) 1. 1 2. 3. 4. 5. -1+i 6. 7. 8. 5 9. 10. 36 11. k=0,-1<b<1 12. a≤10 二、(第13题至笫16题) 13. C 14. A 15. A 16. D 三、(第17题至笫22题) 17.解:y=cos(x+) cos(x-)+sin2x =cos2x+sin2x=2sin(2x+) ∴函数y=cos(x+) cos(x-)+sin2x的值域是[-2,2],最小正周期是π. 18.解:连接BC,由余弦定理得BC2=202+102-2×20×10COS120°=700. 于是,BC=10. ∵, ∴sin∠ACB=, ∵∠ACB<90° ∴∠ACB=41° ∴乙船应朝北偏东71°方向沿直线前往B处救援. 19.解:(1) 在四棱锥P-ABCD中,由PO⊥平面ABCD,得 ∠PBO是PB与平面ABCD所成的角, ∠PBO=60°. 在Rt△AOB中BO=ABsin30°=1, 由PO⊥BO, 于是,PO=BOtg60°=,而底面菱形的面积为2. ∴四棱锥P-ABCD的体积V=×2×=2. (2)解法一:以O为坐标原点,射线OB、OC、OP分别为x轴、y轴、z轴的正半轴建立空间直角坐标系. 在Rt△AOB中OA=,于是,点A、B、D、P的坐标分别是A(0,-,0), B(1,0,0),D(-1,0,0)P(0,0, ). E是PB的中点,则E(,0,) 于是=(,0, ),=(0, ,). 设的夹角为θ,有cosθ=,θ=arccos, ∴异面直线DE与PA所成角的大小是arccos. 解法二:取AB的中点F,连接EF、DF. 由E是PB的中点,得EF∥PA, ∴∠FED是异面直线DE与PA所成角(或它的补角). 在Rt△AOB中AO=ABcos30°==OP, 于是, 在等腰Rt△POA中,PA=,则EF=. 在正△ABD和正△PBD中,DE=DF=. cos∠FED== ∴异面直线DE与PA所成角的大小是arccos. 20.证明:(1)设过点T(3,0)的直线l交抛物线y2=2x于点A(x1,y1)、B(x12,y2). 当直线l的钭率下存在时,直线l的方程为x=3,此时,直线l与抛物线相交于点A(3,)、B(3,-).∴=3 当直线l的钭率存在时,设直线l的方程为y=k(x-3),其中k≠0. 当 y2=2x 得ky2-2y-6k=0,则y1y2=-6. y=k(x-3) 又∵x1=y, x2=y, ∴=x1x2+y1y2==3. 综上所述, 命题“如果直线l过点T(3,0),那么=3”是真命题. (2)逆命题是:设直线l交抛物线y2=2x于A、B两点,如果=3,那么该直线过点T(3,0).该命题是假命题. 例如:取抛物线上的点A(2,2),B(,1),此时=3, 直线AB的方程为Y=(X+1),而T(3,0)不在直线AB上. 说明:由抛物线y2=2x上的点A(x1,y1)、B(x12,y2)满足=3,可得y1y2=-6. 或y1y2=2,如果y1y2=-6.,可证得直线AB过点(3,0);如果y1y2=2, 可证得直线AB过点(-1,0),而不过点(3,0). 21.证明(1)当n=1时,a2=2a,则=a; 2≤n≤2k-1时, an+1=(a-1) Sn+2, an=(a-1) Sn-1+2, an+1-an=(a-1) an, ∴=a, ∴数列{an}是等比数列. 解(2)由(1)得an=2a, ∴a1a2…an=2a=2a=a, bn=(n=1,2,…,2k). (3)设bn≤,解得n≤k+,又n是正整数,于是当n≤k时, bn<; 当n≥k+1时, bn>. 原式=(-b1)+(-b2)+…+(-bk)+(bk+1-)+…+(b2k-) =(bk+1+…+b2k)-(b1+…+bk) ==. 当≤4,得k2-8k+4≤0, 4-2≤k≤4+2,又k≥2, ∴当k=2,3,4,5,6,7时,原不等式成立. 22.解(1) 函数y=x+(x>0)的最小值是2,则2=6, ∴b=log29. (2)设0<x1<x2,y2-y1=. 当<x1<x2时, y2>y1, 函数y=在[,+∞)上是增函数; 当0<x1<x2<时y2<y1, 函数y=在(0,]上是减函数. 又y=是偶函数,于是,该函数在(-∞,-]上是减函数, 在[-,0)上是增函数. (3)可以把函数推广为y=(常数a>0),其中n是正整数. 当n是奇数时,函数y=在(0,]上是减函数,在[,+∞) 上是增函数, 在(-∞,-]上是增函数, 在[-,0)上是减函数. 当n是偶数时,函数y=在(0,]上是减函数,在[,+∞) 上是增函数, 在(-∞,-]上是减函数, 在[-,0)上是增函数. F(x)= + = 因此F(x) 在 [,1]上是减函数,在[1,2]上是增函数. 所以,当x=或x=2时, F(x)取得最大值()n+()n; 当x=1时F(x)取得最小值2n+1.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 考试专区 > 高考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服