1、一次函数习题(二)1.教室里放有一台饮水机(如图),饮水机上有两个放水管课间同学们依次到饮水机前用茶杯接水假设接水过程中水不发生泼洒,每个同学所接的水量都是相等的两个放水管同时打开时,他们的流量相同.放水时先打开一个水管,过一会儿,再打开第二个水管,放水过程中阀门一直开着饮水机的存水量y(升)与放水时间x(分钟)的函数关系如图所示:(1)求出饮水机的存水量y(升)与放水时间x(分钟)(x2)的函数关系式;(2)如果打开第一个水管后,2分钟时恰好有4个同学接水结束,则前22个同学接水结束共需要几分钟?(3)按(2)的放法,求出在课间10分钟内班级中最多有多少个同学能及时接完水?2.某出版社出版一
2、种适合中学生阅读的科普读物,若该读物首次出版印刷的印数不少于5000册时,投入的成本与印数间的相应数据如下:印数x(册) 5000 8000 10000 15000 成本y(元) 28500 36000 41000 53500 (1)经过对上表中数据的探究,发现这种读物的投入成本y(元)是印数x(册)的一次函数,求这个一次函数的解析式(不要求写出x的取值范围);(2)如果出版社投入成本48000元,那么能印该读物多少册?3.阅读:我们知道,在数轴上,x1表示一个点,而在平面直角坐标系中,x1表示一条直线;我们还知道,以二元一次方程2xy10的所有解为坐标的点组成的图形就是一次函数y2x1的图象
3、,它也是一条直线,如图.观察图可以得出:直线1与直线y2x1的交点P的坐标(1,3)就是方程组 的解,所以这个方程组的解为 在直角坐标系中,x1表示一个平面区域,即直线x1以及它左侧的部分,如图;y2x1也表示一个平面区域,即直线y2x1以及它下方的部分,如图。回答下列问题:(1)在直角坐标系中,用作图象的方法求出方程组 的解;(2)用阴影表示 ,所围成的区域。4一天上行6点钟,汪老师从学校出发,乘车上市里开会,8点准时到会场,中午12点钟回到学校,他这一段时间内的行程S(km)(即离开学校的距离)与时间(h)的关系可用图4中的折线表示,根据图4提供的有关信息,解答下列问题:(1)开会地点离学
4、校多远?(2)求出汪老师在返校途中路程S(km)与时间t(h)的函数关系式;(3)请你用一段简短的话,对汪老师从上午6点到中午12点的活动情况进行描述5.已知正比例函数y=kx与反比例函数y= 的图象都过A(m,,1)点,求此正比例函数解析式及另一个交点的坐标6小明暑假到华东第一高峰黄岗山(位于武夷山境内)旅游,导游提醒大家上山要多带一件衣服,并介绍当地山区气温会随海拔高度的增加而下降.沿途小明利用随身带的登山表(具有测定当前位置高度和气温等功能)测得以下数据:海拔高度x米 400 500 600 700 气温y(0C) 28.6 28.0 27.4 26.8 (1)以海拔高度为x轴,气温为y
5、轴,根据上表提供的数据在下列直角坐标系中描点;(2)观察(1)中所苗点的位置关系,猜想y与x之间的函数关系,求出所猜想的函数表达式,并根据表中提供的数据验证你的猜想;(3)如果小明到达山顶时,只告诉你山顶的气温为18.1,你能计算出黄岗山的海拔高度大约是多少米吗?7.在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)的关系如图12所示。请根据图象所提供的信息解答下列问题:甲、乙两根蜡烛燃烧前的高度分别是,从点燃到燃尽所用的时间分别是;分别求甲、乙两根蜡烛燃烧时y与x之间的函数关系式;当x为何值时,甲、乙两根蜡烛在燃烧过程中的高度相等?14.如图,A、B两点的坐标分别是(x1,0)、(x2,O),其中x1、x2是关于x的方程x2+2x+m-3=O的两根,且x10x2(1)求m的取值范围;(2)设点C在y轴的正半轴上,ACB=90,CAB=30,求m的值;(3)在上述条件下,若点D在第二象限,DABCBA,求出直线AD的函数解析式: