资源描述
23.2 中心对称与中心对称图形
课标依据
1.了解中心对称、中心对称图形的概念,探索它的基本性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分。
2.探索线段、平行四边形、正多边形、圆的中心对称性质。
3.认识并欣赏自然界和现实生活中的中心对称图形。
教学目标
知识与
技能
1.知道中心对称及中心对称图形的概念,能正确表述中心对称的性质;
2.会画一个图形关于某一点中心对称的对称图形.
过程与
方法
经历中心对称的探索过程,通过观察、操作、发现、探究中心对称的有关概念和基本性质,提高观察能力和动手操作能力
情感态度与价值观
通过对中心对称的学习,感受对称、匀称、均衡的美感体验图形变化的规律,感受图形变换和图形的美丽,感受生活中的数学,热爱数学.
教学重点难点
教学
重点
中心对称的概念和性质.
教学
难点
中心对称性质的推导及理解
教学过程设计
师生活动
设计意图
一、导语:上节课我们学习了图形的旋转的有关概念和性质,这节课我们来研究当旋转角是1800时会有什么
二、探究新知
(一)中心对称概念
问题:作出如图的两个图形绕点O旋转180°的图案,并回答:
1.以O为旋转中心,旋转180°后两个图形是否重合?
2.各对称点绕O旋转180°后,这三点是否在一条直线上?
(教师提出问题,学生观察,思考,动手操作,尝试描述出发现规律和结论,并交流。)
归纳:像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.
这两个图形中的对应点叫做关于中心的对称点.
分析:两个图形;围绕一点旋转1800;重合.
(结合操作教师引导学生得到概念.并通过师生交流一起分析概念要素,帮助学生理解)
(二)、中心对称性质
归纳:1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.
2.关于中心对称的两个图形是全等图形.
(三)中心对称作图:课本例1
归纳:画出与已知图形关于已知点的对称图形的方法:一般地,只要画出这个多边形的各个顶点关于已知点的对称点,再顺次连接各点即可.
(教师引导学生怎样找到一个点的对称点,学生思考中心对称的对应点间的关系,如何运用中心对称性质,尝试分析,并作图,)
(四)中心对称图形的概念
1.概念:
2.中心对称与中心对称图形的区别与联系:
三、巩固运用
1.课本66页练习。
2.Ppt巩固练习题。
(学生独立完成,教师巡视,根据学生完成情况,点评指正。)
四、小结归纳
1.中心对称,中心对称图形,对称中心,对称点的概念。
2.中心对称的性质。
3.中心对称作图的方法。
4. 中心对称与中心对称图形的区别与联系。
五、作业
教科书第69页,第 1题(做在作业本上)
教科书第69页,第2题(做在书上)
通过显示图形变化,导入课题,同时通过图形变换引出概念。
通过实际操作,感受图形变换,直观的得出概念,易于理解.
运用性质,寻找对应点,学会作一个图形关于某点中心对称的图形
在比较中加深理解,并为今后的综合运用奠定基础.
通过练习巩固所学各知识点,并了解它们之间的联系与区别。
展开阅读全文