收藏 分销(赏)

内蒙古巴彦淖尔市乌中旗二中九年级数学上册 《2.2 配方法》教案 北师大版.doc

上传人:s4****5z 文档编号:7636780 上传时间:2025-01-10 格式:DOC 页数:6 大小:88.50KB
下载 相关 举报
内蒙古巴彦淖尔市乌中旗二中九年级数学上册 《2.2 配方法》教案 北师大版.doc_第1页
第1页 / 共6页
内蒙古巴彦淖尔市乌中旗二中九年级数学上册 《2.2 配方法》教案 北师大版.doc_第2页
第2页 / 共6页
点击查看更多>>
资源描述
2.2 配方法(第一课时) 教学目标: 1、会用开平方法解形如(x+m)2=n (n≥0)的方程; 2、理解配方法,会用配方法解简单的数字系数的一元二次方程; 3、体会转化的数学思想,用配方法解一元二次方程的过程。 教学程序: 一、复习: 1、解下列方程: (1)x2=9 (2)(x+2)2=16 2、什么是完全平方式? 利用公式计算: (1)(x+6)2 (2)(x-)2 注意:它们的常数项等于一次项系数一半的平方。 3、解方程:(梯子滑动问题) x2+12x-15=0 二、新授: 1、引入:像上面第3题,我们解方程会有困难,是否将方程转化为第1题的方程的形式呢? 2、解方程的基本思路(配方法) 如:x2+12x-15=0 转化为 (x+6)2=51 两边开平方,得 x+6=± ∴x1=―6 x2=――6(不合实际) 因此,解一元二次方程的基本思路是将方程转化为(x+m)2=n 的形式,它的一边是一个完全平方式,另一边是一个常数,当n≥0 时,两边开平方便可求出它的根。 3、配方:填上适当的数,使下列等式成立: (1)x2+12x+ =(x+6)2 (2)x2―12x+ =(x― )2 (3)x2+8x+ =(x+ )2 从上可知:常数项配上一次项系数的一半的平方。 4、讲解例题: 例1:解方程:x2+8x―9=0 分析:先把它变成(x+m)2=n (n≥0)的形式再用直接开平方法求解。 解:移项,得:x2+8x=9 配方,得:x2+8x+42=9+42 (两边同时加上一次项系数一半的平方) 即:(x+4)2=25 开平方,得:x+4=±5 即:x+4=5 ,或x+4=―5 所以:x1=1,x2=―9 5、配方法:通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二闪方程的方法称为配方法。 配方法(二) 教学目标: 1、利用配方法解数字系数的一般一元二次方程。 2、进一步理解配方法的解题思路。 教学重点、难点:用配方法解一元二次方程的思路;给方程配方。 教学程序: 一、复习: 1、什么叫配方法? 2、怎样配方?方程两边同加上一次项系数一半的平方。 3、解方程: (1)x2+4x+3=0 (2)x2―4x+2=0 二、新授: 1、例题讲析: 例3:解方程:3x2+8x―3=0 分析:将二次项系数化为1后,用配方法解此方程。 解:两边都除以3,得: x2+x―1=0 移项,得:x2+x = 1 配方,得:x2+x+()2= 1+()2 (方程两边都加上一次项系数一半的平方) (x+)2=()2 即:x+=± 所以x1=,x2=―3 2、用配方法解一元二次方程的步骤: (1)把二次项系数化为1; (2)移项,方程的一边为二次项和一次项,另一边为常数项。 (3)方程两边同时加上一次项系数一半的平方。 (4)用直接开平方法求出方程的根。 3、做一做: 一小球以15m/s的初速度竖直向上弹出,它在空中的高度h(m)与时间t(s)满足关系: h=15 t―5t2 小球何时能达到10m高? 三、巩固: 练习:P51,随堂练习:1 四、小结: 1、用配方法解一元二次方程的步骤。 (1)化二次项系数为1; (2)移项; (3)配方: (4)求根。 配方法(三) 教学目标:1、经历到方程解决实际,问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型,培养学生数学应用的意识和能力; 2、进一步掌握用配方法解题的技能 教学重点、难点:列一元二次方程解方程。 教学程序: 一、复习: 1、配方: (1)x2―3x+ =(x― )2 (2)x2―5x+ =(x― )2 2、用配方法解一元二次方程的步骤是什么? 3、用配方法解下列一元二次方程? (1)3x2―1=2x (2)x2―5x+4=0 二、引入课题: 我们已经学习了用配方法解一元二次方程,在生产生活中常遇到一些问题,需要用一元二次方程来解答,请同学们将课本翻到54页,阅读课本,并思考: 三、出示思考题: 1、 如图所示: (1)设花园四周小路的宽度均为x m,可列怎样的一元二次方程? (16-2x) (12-2x)= ×16×12 (2)一元二次方程的解是什么? x1=2 x2=12 (3)这两个解都合要求吗?为什么? x1=2合要求, x2=12不合要求,因荒地的宽为12m,小路的宽不可能为12m,它必须小于荒地宽的一半。 2、设花园四角的扇形半径均为x m,可列怎样的一元二次方程? x2π=×12×16 (2)一元二次方程的解是什么? X1=≈5.5 X2≈-5.5 (3)合符条件的解是多少? X1=5.5 3、你还有其他设计方案吗?请设计出来与同伴交流。 (1)花园为菱形? (2)花园为圆形 (3)花园为三角形? (4)花园为梯形 四、练习:P56随堂练习 五、小结: 1、本节内容的设计方案不只一种,只要合符条件即可。 2、设计方案时,关键是列一元二次方程。 3、一元二次方程的解一般有两个,要根据实际情况舍去不合题意的解。 六、作业: P56,习题2.5,1、2 七、教学后记:
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服