1、14.1.1 变量 教案自学指导:(阅读课本思考下列问题)1. 什么叫变量?什么叫常量?2. 注意课本所列举的变化过程中的变量和常量的分辨方法。3. 变量与常量的本质区别在于什么?自学效果检查: 1.指出下列实例中的常量和变量:(1)每张电影票的售价为10元,设一场电影受出票x张,票房收入为y元,怎样用含x的式子表示y? (2)如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含重物质量 m(单位:kg)的式子表示受力后弹簧长度l(单位:cm)? (3)要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含圆面积S的式子表示圆的半径r? (4)用10m长的
2、绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化。记录不同的长方形的长度值,计算相应的长方形面积的值,探索它们的变化规律,设长方形的长为xm,面积为Sm2,怎样用含x的式子表示S? 2.说出常量和变量的概念: 在一个变化过程中,我们称数值发生变化的量为变量(variable).数值始终不变的量为常量。3.范例:写出下列各问题中所满足的关系式,并指出各个关系式中,哪些量是变量,哪些量是常量?(1) 用总长为60m的篱笆围成矩形场地,求矩形的面积S(m2)与一边长x(m)之间的关系式;(2) 购买单价是0.4元的铅笔,总金额y(元)与购买的铅笔的数量n(支)的关系;(3) 运动员在40
3、00m一圈的跑道上训练,他跑一圈所用的时间t(s)与跑步的速度v(m/s)的关系;(4) 银行规定:五年期存款的年利率为2.79%,则某人存入x元本金与所得的本息和y(元)之间的关系。拓展与延伸:1.分别指出下列各式中的常量与变量.(1) 圆的面积公式S=r2;(2) 正方形的l=4a;(3) 大米的单价为2.50元/千克,则购买的大米的数量x(kg)与金额与金额y的关系为y=2.5x.2.写出下列问题的关系式,并指出不、常量和变量.(1) 某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式.(2) 如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是S,求S与n之间的关系式.思考:怎样列变量之间的关系式?小结:变量与常量作业:阅读教材5页,11.1.2函数教学后记: