收藏 分销(赏)

山东省郯城县红花镇中考数学专题复习 专题三(14-2)二次函数代数方面的应用教案-人教版初中九年级全册数学教案.doc

上传人:s4****5z 文档编号:7630673 上传时间:2025-01-10 格式:DOC 页数:7 大小:159.50KB
下载 相关 举报
山东省郯城县红花镇中考数学专题复习 专题三(14-2)二次函数代数方面的应用教案-人教版初中九年级全册数学教案.doc_第1页
第1页 / 共7页
山东省郯城县红花镇中考数学专题复习 专题三(14-2)二次函数代数方面的应用教案-人教版初中九年级全册数学教案.doc_第2页
第2页 / 共7页
点击查看更多>>
资源描述
二次函数代数方面的应用 一、【教材分析】 教 学 目 标 知识 技能 1. 会把实际问题中的最值转化为二次函数的最值问题. 2. 会求二次函数与坐标轴交点、一元二次方程、不等式、一次函数等问题. 过程方法 1. 通过对生活中实际问题的研究,经历将实际问题转化为数学问题的过程,体会数学知识的现实意义. 2. 会解决有关利润最值等代数问题. 情感 态度 通过解决实际生活中与二次函数有关的代数问题,体会学习数学知识的价值,从而增强学习数学的兴趣. 教学 重点 二次函数在代数方面的应用. 教学 难点 利用二次函数解决代数方面的实际问题. 二、【教学流程】 教学环节 教学问题设计 师生活动 二次备课 知 识 回 顾 【回顾练习】 1.已知抛物线y=ax2+bx+c的图象如图所示,则|a﹣b+c|+|2a+b|=(  ) (第1题图) A.a+b B.a﹣2b C.a﹣b D.3a 2.已知二次函数y=x2+bx+c与x轴只有一个交点,且图象过A(x1,m)、B(x1+n,m)两点,则m、n的关系为(  ) A.m= n B.m= n C.m= n2 D.m= n2 3.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为   . 观察函数图象找出“a>0,c=0,﹣2a<b<0”,由此即可得出|a﹣b+c|=a﹣b,|2a+b|=2a+b,根据整式的加减法运算即可得出结论. 【分析】由“抛物线y=x2+bx+c与x轴只有一个交点”推知x=﹣时,y=0.且b2﹣4c=0,即b2=4c,其次,根据抛物线对称轴的定义知点A、B关于对称轴对称,故A(﹣﹣,m),B(﹣+,m);最后,根据二次函数图象上点的坐标特征即可得出结论. 根据题意可以列出相应的不等式,从而可以解答本题. 二次函数图象与系数的关系. 抛物线与x轴的交点. 综 合 运 用 1.如图,二次函数y=ax2+bx+c (a≠0)的图像与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC. 则下列结论: ①abc>0 ②9a+3b+c<0 ③c>-1 ④关于x的方程ax2+bx+c=0 (a≠0)有一个根为- 其中正确的结论个数有( ) A. 1个 B. 2个 C.3个 D. 4个 (第1题图) 2.某宾馆有50个房间供游客居住,当每个房间定价120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲。如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间定价增加10 x元(x为整数)。 ⑴直接写出每天游客居住的房间数量y与x的函数关系式。 ⑵设宾馆每天的利润为W元,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利润是多少? ⑶某日,宾馆了解当天的住宿的情况,得到以下信息:①当日所获利润不低于5000元,②宾馆为游客居住的房间共支出费用没有超过600元,③每个房间刚好住满2人。 问:这天宾馆入住的游客人数最少有多少人? 本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点. 本题考查了二次函数的应用,,不等式组的应用,要求同学们仔细审题,将实际问题转化为数学模型;注意配方法的求二次函数最值的应用. 二次函数图象与系数的关系,数形结合思想. 二次函数的应用,不等式组的应用. 纠 正 补 偿 某网店销售某款童装,每件售价60元,每星期可卖300件. 为了促俏,该店决定降价销售,市场调查反映:每降价1元,每星期可多卖30件. 已知该款童装每件成本价40元. 设该款童装每件售价x元,每星期的销售量为y件. (1)求y与x之间的函数关系式; (2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少? (3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件? 【点评】本题综合考查了一次函数、二次函数的应用. 建立函数并运用一次函数和二次函数的性质解题是解题的关键. (1)每星期的销售量=原来的销售量+降价销售而多销售的销售量就可得出函数关系式; (2)根据销售量×销售单价=利润,建立二次函数,进一步用配方法解决求最大值问题. (3)列出一元二次方程,根据抛物线W= -30(x-55)2+6750的开口向下可得出当52≤x≤58时,每星期销售利润不低于6480元,再在 y= -30+2100中,根据k= -30<0,y随x的增大而减小,求解即可. 一次函数、二次函数的应用. 完 善 整 合 考点梳理: 二次函数的应用包括两个方面: (1)用二次函数表示实际问题变量之间的关系; (2)用二次函数解决最大化问题(即最值问题),用二次函数的性质求解,同时注意自变量的取值范围; (3)利用二次函数的图象求一元二次方程的近 似解. 方法总结 常利用二次函数的知识解决以下几类问题:最大利润问题、求几何图形面积(或体积)的最值问题、拱桥问题、运动型几何问题、方案设计问题等. 三、【板书设计】 建立直角坐标系 二次函数 问题求解 找出实际问题的答案 四、 【教后反思】 本节课的教学目标是:继续经历利用二次函数解决实际最值问题;会综合运用二次函数和其他数学知识解决如有关距离、利润等的函数最值问题;发展应用数学解决问题的能力,体会数学与生活的密切联系和数学的应用价值。 本 节课只有两个例题,第一个例题是有关距离问题,第二个例题是有关利润的问题。原计划本节课用一节课的时间,但是在实际操作过程中,第一个例题就用了一节课 的时间,所以本节课要用两个课时来上。首先是复习了函数的应用,问学生经过前面对二次函数学习,给他们留下最深刻的是什么?学生马上能想到二次函数的最 值,然后引导学生利用二次函数求只值问题应该注意的事项。1、根据实际问题求出函数解析式,求出自变良取值范围;2、把解析式化成配方式,或者把利用公式 来求出函数的顶点坐标。3、检查顶点的横坐标是否在自变量的取值范围内。 举例 有最大值还是最小值,什么时候能取到最大或者最小值?变化例子是否有最大或者最小值,什么时候取到最大或者最小值?这样做一方面巩固了最大值的取法,而且还为距离的最值问题做好铺垫。 例题的教学采取多媒体展示,根据提供的信息化出图形,引导学生观察,求距离可以根据勾股定理列出代数式。代数式是,问题转化为怎样求这个代数式的最小值。学生很自然想到,要使代数式的值最小,也就是被开方数要最小,也就想到转化为配方形式 ;解法二,利用公式求出。 这样做就为利润问题列出函数解析式奠定了基础,主要的难点是从表格中提供的信息,总结出单价每增加一元,日均销售良就减少40瓶。根据这一规律,就不难列出y关于x的函数解析式。 引导学生思考,你认为商家要追求最大利润,销售价格是定的越低越好还是越高越好?让学生再次体会数学与生活的的密切联系和数学的应用价值。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服