收藏 分销(赏)

秋九年级数学上册 24.1.2 垂直于弦的直径教案1 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc

上传人:s4****5z 文档编号:7628839 上传时间:2025-01-10 格式:DOC 页数:2 大小:366KB
下载 相关 举报
秋九年级数学上册 24.1.2 垂直于弦的直径教案1 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc_第1页
第1页 / 共2页
秋九年级数学上册 24.1.2 垂直于弦的直径教案1 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc_第2页
第2页 / 共2页
本文档共2页,全文阅读请下载到手机保存,查看更方便
资源描述
垂直于弦的直径 1.进一步认识圆是轴对称图形. 2.能利用圆的轴对称性,通过探索、归纳、验证得出垂直于弦的直径的性质和推论,并能应用它解决一些简单的计算、证明和作图问题. 3.认识垂径定理及推论在实际中的应用,会用添加辅助线的方法解决问题.                     一、情境导入 你知道赵州桥吗?它又名“安济桥”,位于河北省赵县,是我国现存的著名的古代石拱桥,距今已有1400多年了,是隋代开皇大业年间(605~618)由著名将师李春建造的,是我国古代人民勤劳和智慧的结晶. 它的主桥拱是圆弧形,全长50.82米,桥宽约10米,跨度37.4米,拱高7.2米,是当今世界上跨径最大、建造最早的单孔敞肩石拱桥.你知道主桥拱的圆弧所在圆的半径吗? 二、合作探究 探究点一:垂径定理 【类型一】垂径定理的理解 如图所示,⊙O的直径AB垂直弦CD于点P,且P是半径OB的中点,CD=6cm,则直径AB的长是(  ) A.2cm     B.3cm C.4cm     D.4cm 解析:∵直径AB⊥DC,CD=6,∴DP=3.连接OD,∵P是OB的中点,设OP为x,则OD为2x,在Rt△DOP中,根据勾股定理列方程32+x2=(2x)2,解得x=.∴OD=2,∴AB=4.故选D. 方法总结:我们常常连接半径,利用半径、弦、垂直于弦的直径造出直角三角形,然后应用勾股定理解决问题. 【类型二】垂径定理的实际应用 如图,一条公路的转弯处是一段圆弧(图中的),点O是这段弧的圆心,C是上一点,OC⊥AB,垂足为D,AB=300m,CD=50m,则这段弯路的半径是________m. 解析:本题考查垂径定理,∵OC⊥AB,AB=300m,∴AD=150m.设半径为R,根据勾股定理可列方程R2=(R-50)2+1502,解得R=250.故答案为250. 方法总结:将实际问题转化为数学问题,再利用我们学过的垂径定理、勾股定理等知识进行解答. 探究点二:垂径定理的推论 【类型一】利用垂径定理的推论求角 如图所示,⊙O的弦AB、AC的夹角为50°,M、N分别是、的中点,则∠MON的度数是(  ) A.100° B.110° C.120° D.130° 解析:已知M、N分别是、的中点,由“平分弧的直径垂直平分弧所对的弦”得OM⊥AB、ON⊥AC,所以∠AEO=∠AFO=90°,而∠BAC=50°,由四边形内角和定理得∠MON=360°-∠AEO-∠AFO-∠BAC=360°-90°-90°-50°=130°.故选D. 【类型二】利用垂径定理的推论求边 如图,点A、B是⊙O上两点,AB=10cm,点P是⊙O上的动点(与A、B不重合),连接AP、BP,过点O分别作OE⊥AP于E,OF⊥PB于F,求EF的长. 解析:运用垂径定理先证出EF是△ABP的中位线,然后运用三角形中位线性质把要求的EF与AB建立关系,从而解决问题. 解:在⊙O中,∵OE⊥AP,OF⊥PB,∴AE=PE,BF=PF,∴EF是△ABP的中位线,∴EF=AB=×10=5cm. 方法总结:垂径定理虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手. 【类型三】动点问题 (2014·广东佛山)如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围. 解析:当点P处于弦AB的端点时,OP最长,此时OP为半径的长;当OP⊥AB时,OP最短,利用垂径定理及勾股定理可求得此时OP的长. 解:作直径MN⊥弦AB,交AB于点D,由垂径定理,得AD=DB=AB=4cm.又∵⊙O的直径为10cm,连接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD==3cm.∵垂线段最短,半径最长,∴OP的长度范围是3≤OP≤5(单位:cm). 方法总结:解题的关键是明确OP最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况. 三、板书设计 教学过程中,强调垂径定理的得出跟圆的轴对称密切相关.在圆中求有关线段长时,可考虑垂径定理的应用.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服