收藏 分销(赏)

八年级数学下册 第9章 二次根式 9.1 二次根式和它的性质教案 (新版)青岛版-(新版)青岛版初中八年级下册数学教案.doc

上传人:s4****5z 文档编号:7626833 上传时间:2025-01-10 格式:DOC 页数:14 大小:660KB 下载积分:10 金币
下载 相关 举报
八年级数学下册 第9章 二次根式 9.1 二次根式和它的性质教案 (新版)青岛版-(新版)青岛版初中八年级下册数学教案.doc_第1页
第1页 / 共14页
八年级数学下册 第9章 二次根式 9.1 二次根式和它的性质教案 (新版)青岛版-(新版)青岛版初中八年级下册数学教案.doc_第2页
第2页 / 共14页


点击查看更多>>
资源描述
9.1 二次根式和它的性质(1) 教学内容 二次根式的概念及其运用 教学目标 知识与技能目标: 理解二次根式的概念,并利用(a≥0)的意义解答具体题目. 过程与方法目标:提出问题,根据问题给出概念,应用概念解决实际问题. 情感与价值目标:通过本节的学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力. 教学重难点关键 1.重点:形如(a≥0)的式子叫做二次根式的概念; 2.难点与关键:利用“(a≥0)”解决具体问题. 教法:1、引导发现法: 通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用; 2、讲练结合法: 在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。 学法:1、类比的方法 通过观察、类比,使学生感悟二次根式的模型,形成有效的学习策略。 2、阅读的方法 让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。 3、分组讨论法 将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。 4、练习法 采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。 媒体设计:PPT课件,展台。 课时安排:1课时。 教学过程 一、复习引入 (学生活动)请同学们独立完成下列三个问题: 问题1:已知反比例函数y=,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________. 问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________. 老师点评: 问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x=,所以所求点的坐标为(,). 问题2:由勾股定理,得AB= 二、探索新知 很明显、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号. 议一议: 1.-1有算术平方根吗? 2.0的算术平方根是多少? 3.当a<0,有意义吗? 例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、-、、(x≥0,y≥0). 分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0. 解:二次根式有:、(x>0)、、-、(x≥0,y≥0);不是二次根式的有:、、、. 例2.当x是多少时,在实数范围内有意义? 分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义. 解:由3x-1≥0,得:x≥ 当x≥时,在实数范围内有意义. 三、应用拓展 例3.当x是多少时,+在实数范围内有意义? 分析:要使+在实数范围内有意义,必须同时满足中的2x+3≥0和中的x+1≠0. 解:依题意,得 由①,得x≥- 由②,得x≠-1 当x≥-且x≠-1时,+在实数范围内有意义. 例4(1)已知y=++5,求的值.(答案:2) (2)若+=0,求a2004+b2004的值.(答案:) 四、归纳小结 本节课要掌握: 1.形如(a≥0)的式子叫做二次根式,“”称为二次根号. 2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数. 五、布置作业 一、选择题 1.下列式子,是二次根式的是( ) A.- B. C. D.x 2.下列式子,不是二次根式的是( ) A. B. C. D. 3.已知一个正方形的面积是5,那么它的边长是( ) A.5 B. C. D.以上皆不对 二、填空题 1.形如________的式子叫做二次根式. 2.面积为a的正方形的边长为________. 3.负数________平方根. 三、综合提高题 1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问:底面边长应是多少? 2.当x是多少时,+x2在实数范围内有意义? 3.若+有意义,则=_______. 4.使式子有意义的未知数x有( ). A.0 个. B.1个. C.2个 D.无数个 5.已知a、b为实数,且+2=b+4,求a、b的值. 答案: 一、1.A 2.D 3.B二、1.(a≥0) 2. 3.没有 三、1.设底面边长为x,则0.2x2=1,解答:x=. 2.依题意得:, ∴当x>-且x≠0时,+x2在实数范围内没有意义. 3. 4.B 5.a=5,b=-4 板书设计: §16.1.1.二次根式(1) 情境引入 例2 学生板演 二次根式的定义 例3 例1 例4 小结 9.1 二次根式和它的性质(2) 教学内容 1.(a≥0)是一个非负数; 2.()2=a(a≥0). 教学目标 知识与技能目标:理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简. 过程与方法目标:过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0);最后运用结论严谨解题. 情感与价值目标:通过本节的学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力. 教学重难点关键 1.重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用. 2.难点、关键:用分类思想的方法导出(a≥0)是一个非负数;用探究的方法导出()2=a(a≥0). 教法:1、引导发现法: 通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用; 2、讲练结合法: 在例题教学中,引导学生阅读、类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。 学法:1、类比的方法通过观察、类比,使学生理解(a≥0)是一个非负数和()2= a(a≥0),形成有效的学习策略。 2、阅读的方法 让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。 3、分组讨论法 将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。 4、练习法 采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。 媒体设计:PPT课件,展台。 课时安排:1课时。 教学过程 一、复习引入 (学生活动)口答 1.什么叫二次根式? 2.当a≥0时,叫什么?当a<0时,有意义吗? 老师点评(略). 二、探究新知 议一议: (a≥0)是一个什么数呢? 老师点评: (a≥0)是一个非负数. 做一做:根据算术平方根的意义填空: ()2=_______;()2=_______;()2=______;()2=_______; ()2=______;()2=_______;()2=_______. 老师点评:是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4. 同理可得:()2=2,()2=9,()2=3,()2=,()2=,()2=0,所以 ()2=a(a≥0) 例1、 计算 1.()2 2.(3)2 3.()2 4.()2 分析:我们可以直接利用()2=a(a≥0)的结论解题. 解:()2 =,(3)2 =32·()2=32·5=45, ()2=,()2=. 三、巩固练习 计算下列各式的值: ()2 ()2 ()2 ()2 (4)2 四、应用拓展 例2、 计算 1.()2(x≥0) 2.()2 3.()2 4.()2 分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0; (4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2≥0. 所以上面的4题都可以运用()2=a(a≥0)的重要结论解题. 解:(1)因为x≥0,所以x+1>0,()2=x+1 (2)∵a2≥0,∴()2=a2 (3)∵a2+2a+1=(a+1)2 又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴=a2+2a+1 (4)∵4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2 又∵(2x-3)2≥0 ∴4x2-12x+9≥0,∴()2=4x2-12x+9 例3、在实数范围内分解下列因式: (1)x2-3 (2)x4-4 (3) 2x2-3 分析:(略) 五、归纳小结 本节课应掌握: 1.(a≥0)是一个非负数; 2.()2=a(a≥0);反之:a=()2(a≥0). 六、布置作业 一、选择题 1.下列各式:、、、、、,二次根式的个数是( ). A.4 B.3 C.2 D.1 2.数a没有算术平方根,则a的取值范围是( ). A.a>0 B.a≥0 C.a<0 D.a=0 二、填空题 1.(-)2=________. 2.已知有意义,那么是一个_______数. 三、综合提高题 1.计算 (1)()2 (2)-()2 (3)()2 (4)(-3)2 (5) 2.把下列非负数写成一个数的平方的形式: (1)5 (2)3.4 (3) (4)x(x≥0) 3.已知+=0,求xy的值. 4.在实数范围内分解下列因式: (1)x2-2 (2)x4-9 3x2-5 答案: 一、1.B 2.C ; 二、1.3 2.非负数;三、1.(1)()2=9 (2)-()2=-3 (3)()2=×6= ;(4)(-3)2=9×=6 (5)-6 2.(1)5=()2 ;(2)3.4=()2 ;(3)=()2 ; (4)x=()2(x≥0) 3. xy=34=81; 4.(1)x2-2=(x+)(x-) (2)x4-9=(x2+3)(x2-3)=(x2+3)(x+)(x-); (3)略 板书设计: §16.1.二次根式(2) 情境引入 例1 学生板演 1.(a≥0)是一个非负数; 例2 2.()2=a(a≥0); 反之:a=()2(a≥0). 例3 小结 9.1 二次根式和它的性质(3) 教学内容:=a(a≥0) 教学目标 知识与技能目标:理解=a(a≥0)并利用它进行计算和化简. 过程与方法目标: 通过具体数据的解答,探究=a(a≥0),并利用这个结论解决具体问题. 情感与价值目标:通过本节的学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力. 教学重难点关键 1.重点:=a(a≥0). 2.难点:探究结论. 3.关键:讲清a≥0时,=a才成立. 教法:1、引导发现法: 通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用; 2、讲练结合法: 在例题教学中,引导学生阅读类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。 学法:1、类比的方法 通过观察、类比,使学生感悟=a(a≥0),形成有效的学习策略。 2、阅读的方法 让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。 3、分组讨论法 将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。 4、练习法 采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。 媒体设计:PPT课件,展台。 课时安排:1课时。 教学过程:一、复习引入 1.形如(a≥0)的式子叫做二次根式; 2.(a≥0)是一个非负数; 3.()2=a(a≥0). 那么,我们猜想当a≥0时,=a是否也成立呢?下面我们就来探究这个问题. 二、探究新知 填空: =_______;=_______;=______; =________;=________;=_______. (老师点评):根据算术平方根的意义,我们可以得到: =2;=0.01;=;=;=0;=. 因此,一般地:=a(a≥0) 例1、化简 (1) (2) (3) (4) 分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52, (4)(-3)2=32,所以都可运用=a(a≥0)去化简. 解:(1)==3 (2)==4 (3)==5 (4)==3 三、应用拓展 例2、 填空:当a≥0时,=_____;当a<0时,=_______,并根据这一性质回答下列问题. (1)若=a,则a可以是什么数? (2)若=-a,则a可以是什么数? (3)>a,则a可以是什么数? 分析:∵=a(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“( )2”中的数是正数,因为,当a≤0时,=,那么-a≥0. (1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知=│a│,而│a│要大于a,只有什么时候才能保证呢?a<0. 解:(1)因为=a,所以a≥0; (2)因为=-a,所以a≤0; (3)因为当a≥0时=a,要使>a,即使a>a,所以a不存在;当a<0时,=-a,要使>a,即使-a>a,a<0,综上,a<0 例3、当x>2,化简-. 分析:(略) 四、归纳小结 本节课应掌握:=a(a≥0)及其运用,同时理解当a<0时,=-a的应用拓展. 五、布置作业 一、选择题 1.的值是( ). A.0 B. C.4 D.以上都不对 2.上a≥0时,、、-,比较它们的结果,正确的是( ). A.=≥- B.>>- C.<<- D.->= 二、填空题 1.-=________. 2.若是一个正整数,则正整数m的最小值是________. 三、综合提高题 1.先化简再求值:当a=9时,求a+的值,甲乙两人的解答如下: 甲的解答为:原式=a+=a+(1-a)=1; 乙的解答为:原式=a+=a+(a-1)=2a-1=17. 在两种解答中,_______的解答是错误的,错误的原因是__________. 2.若│1995-a│+=a,求a-19952的值. (提示:先由a-2000≥0,判断1995-a的值是正数还是负数,去掉绝对值) 3. 若-3≤x≤2时,试化简:│x-2│++。 答案:一、1.C 2.A;二、1.-0.02 2.5;三、1.甲 甲没有先判定1-a是正数还是负数 2.由已知得a-2000≥0,a≥2000 所以a-1995+=a,=1995,a-2000=19952, 所以a-19952=2000. 3. 10-x 板书设计: §16.1.二次根式(3) 情境引入 例2 学生板演 =a(a≥0). 例3 例1 练习 小结
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服