1、16.1.2 分式的基本性质教学目标:1、知识与技能:掌握分式的基本性质,掌握分式约分方法,熟练进行约分并了解最简分式的意义。2、过程与方法:使学生理解分式通分的意义,掌握分式通分的方法及步骤。3、情感态度与价值观:能通过回忆分数的意义,类比地探索分式的性质,渗透数学中的类比,分类等数学思想。教学重点:让学生知道约分、通分的依据和作用,学会分式约分与通分的方法。教学难点:1、分子、分母是多项式的分式约分;2、几个分式最简公分母的确定。教学过程:一、分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是: ( 其中M是不等于零的整式)。与分数类似,根据分式
2、的基本性质,可以对分式进行约分和通分.二、例3约分(1);(2)分析 分式的约分,即要求把分子与分母的公因式约去.为此,首先要找出分子与分母的公因式.解(1). (2).约分后,分子与分母不再有公因式. 分子与分母没有公因式称为最简分式.三、练习:P5 练习 第1题:约分(1)(3)四、例4通分(1),;(2),; (3),解(1)与的最简公分母为a2b2,所以, .(2)与的最简公分母为(x-y)(x+y),即x2y2,所以, .请同学们根据这两小题的解法,完成第(3)小题。五、练习P5 练习 第2题:通分六、作业:P5练习 1约分:第(2)(4)题,习题17.1第4题七、教学反思:(1)请你分别用数学语言和文字表述分式的基本性质;(2)分式的约分运算,用到了哪些知识?让学生发表,互相补充,归结为:因式分解;分式基本性质;分式中符号变换规律;约分的结果是,一般要求分、分母不含“”。(3)把几个异分母的分式,分别化成与原来分式相等的同分母的分式,叫做分式的通分。分式通分,是让原来分式的分子、分母同乘以一个适当的整式,根据分式基本性质,通分前后分式的值没有改变。通分的关键是确定几个分式的公分母,从而确定各分式的分子、分母要乘以什么样的“适当整式”,才能化成同一分母。确定公分母的方法,通常是取各分母所有因式的最高次幂的积做公分母,这样的公分母叫做最简公分母。