收藏 分销(赏)

山东省枣庄市峄城区吴林街道中学八年级数学下册 6.6 关注三角形的外角教案 北师大版.doc

上传人:s4****5z 文档编号:7613204 上传时间:2025-01-10 格式:DOC 页数:9 大小:171.50KB
下载 相关 举报
山东省枣庄市峄城区吴林街道中学八年级数学下册 6.6 关注三角形的外角教案 北师大版.doc_第1页
第1页 / 共9页
山东省枣庄市峄城区吴林街道中学八年级数学下册 6.6 关注三角形的外角教案 北师大版.doc_第2页
第2页 / 共9页
山东省枣庄市峄城区吴林街道中学八年级数学下册 6.6 关注三角形的外角教案 北师大版.doc_第3页
第3页 / 共9页
山东省枣庄市峄城区吴林街道中学八年级数学下册 6.6 关注三角形的外角教案 北师大版.doc_第4页
第4页 / 共9页
山东省枣庄市峄城区吴林街道中学八年级数学下册 6.6 关注三角形的外角教案 北师大版.doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、6.6关注三角形的外角教案 教学目标:1.经历探索三角形内角和定理的推论的过程,进一步培养学生的推理能力.2.理解掌握三角形内角和定理的推论及其应用.教学重点与难点:重点:三角形内角和定理的推论.难点:三角形的外角、三角形内角和定理的推论的应用.教法与学法指导:教法:以培养学生自主学习能力为主,重点放在“合作与探究”上,让学生多观察、多动脑、大胆猜、勤探究,向学生提供更多的实践机会和交流空间,使学生在动脑、动手、动口的过程中获得分析和解决问题的能力,获得广泛的数学活动经验,成为学习的主人学法:自主探究与小组合作交流相结合课前准备:多媒体课件教学过程:一、温故知新,自然引入师上节课我们证明了三角

2、形内角和定理,大家来回忆一下:它的证明思路是什么?生通过作辅助线,把三角形中处于不同位置的三个内角集中在一起,拼成一个平角.这样就可以证明三角形的内角和等于180.师很好,下面大家来共同证明:三角形的内角和定理.已知,如图656,ABC.求证:A+B+C=180证明:作BC的延长线CD,过点C作CEBA.则:A=ACE(两直线平行,内错角相等)B=ECD(两直线平行,同位角相等)ACB+ACE+ECD=180(1平角=180)ACB+A+B=180(等量代换)师好,在证明这个定理时,先把ABC的一边BC延长,这时在ABC外得到 ACD,我们把ACD叫做三角形ABC的外角.那三角形的外角有什么性

3、质呢?我们这节课就来研究三角形的外角及其应用.设计意图:复习三角形内角和定理的证明方法,为本节课学生打好理论基础,进而引入新课二、师生互动,探究新知师那什么叫三角形的外角呢?像ACD那样,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.外角的特征有三条:(1)顶点在三角形的一个顶点上.如:ACD的顶点C是ABC的一个顶点.(2)一条边是三角形的一边.如:ACD的一条边AC正好是ABC的一条边.(3)另一条边是三角形某条边的延长线.如:ACD的边CD是ABC的BC边的延长线.把三角形各边向两方延长,就可以画出一个三角形所有的外角.由此可知:一个三角形有6个外角,其中有三个与另外三个相等,

4、所以研究时,只讨论三个外角的性质.下面大家来想一想、议一议(出示投影片6.6 A)如图657,1是ABC的一个外角,1与图中的其他角有什么关系呢?能证明你的结论吗?生甲1与4组成一个平角.所以1+4=180.生乙1=2+3.因为:1与4的和是180,而2、3、4是ABC的三个内角.则2+3+4=180.所以2+3=1804.而1=1804,因此可得: 1=2+3.生丙因为1=2+3,所以由和大于任何一个加数,可得:12,13.师很好.大家能用自己的语言说明你的结论的正确性.你能把你的结论归纳成语言吗?生丁三角形的一个外角等于两个内角的和.它也大于三角形的一个内角.生戊不对,如图658.图658

5、(1)中,ACD是ABC的外角,从图中可知:ACB是钝角三角形.ACBACD.所以ACD不可能等于ABC内的任两个内角的和.图658(2)中的ABC是直角三角形,ACD是它的一个外角,它与ACB相等.由上述可知:丁同学归纳的结论是错误的.应该说:三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于和它不相邻的任一个内角.师噢.原来是这样的,同学们同意他的意见吗?生同意.师是三角形的任一个外角都有此结论吗?生是的.师很好.由此我们得到了三角形的外角的性质(出示投影片6.6 B)三角形的一个外角等于和它不相邻的两个内角的和.三角形的一个外角大于任何一个和它不相邻的内角.师这两个结论是

6、由什么推导出来的呢?生通过三角形的内角和定理推出来的.师对.在这里,我们通过三角形内角和定理直接推导出两个新定理,像这样,由一个公理或定理直接推导出的定理叫做这个公理或定理的推论(corollary).因此这两个结论称为三角形内角和定理的推论.它可以当做定理直接使用.注意:应用三角形内角和定理的推论时,一定要理解其意思.即:“和它不相邻”的意义.下面我们来研究三角形内角和定理的推论的应用(出示投影片6.6 C)例1已知,如图659,在ABC中,AD平分外角EAC,B=C,求证:ADBC.师生共析要证明ADBC.只需证明“同位角相等”即:需证明:DAE=B.证明:EAC=B+C(三角形的一个外角

7、等于和它不相邻的两个内角的和)B=CB=EAC(等式的性质)AD平分EAC(已知)DAE=EAC(角平分线的定义)DAE=B(等量代换)ADBC(同位角相等,两直线平行)师同学们想一想,还有没有其他的证明方法呢?生甲这个题还可以用“内错角相等,两直线平行”来证.证明:EAC=B+C(三角形的一个外角等于和它不相邻的两个内角的和)B=C(已知)C=EAC(等式的性质)AD平分EAC(已知)DAC=EAC(角平分线的定义)DAC=C(等量代换)ADBC(内错角相等,两直线平行)生乙还可以用“同旁内角互补,两直线平行”来证.证明:EAC=B+C(三角形的一个外角等于和它不相邻的两个内角的和)B=C(

8、已知)C=EAC(等式的性质)AD平分EAC(已知)DAC=EAC(角平分线的定义)DAC=C(等量代换)B+BAC+C=180(三角形的内角和定理)B+BAC+DAC=180(等量代换)即:B+DAB=180ADBC(同旁内角互补,两直线平行)师同学们叙述得真棒.运用了不同的方法证明了两直线平行.现在大家来想一想:若证明两个角不相等、或大于、或小于时,该如何证呢?(出示投影片6.6 D)例2已知,如图660,在ABC中,1是它的一个外角,E是边AC上一点,延长BC到D,连接DE.求证:12.师生共析一般证明角不等时,应用“三角形的一个外角大于任何一个和它不相邻的内角”来证明.所以需要找到三角

9、形的外角.证明:1是ABC的一个外角(已知)13(三角形的一个外角大于任何一个和它不相邻的内角)3是CDE的一个外角(已知)32(三角形的一个外角大于任何一个和它不相邻的内角)12(不等式的性质)师很好.下面我们通过练习来进一步熟悉掌握三角形内角和定理的推论.设计意图:通过三角形内角和定理直接推导三角形外角的两个推论,引导学生从内和外、相等和不等的不同角度对三角形作更全面的思考,新的定理的推导过程应建立在学生的充分思考和论证的基础之上,教师切勿越俎代庖。三、学以致用,知识反馈1.已知,如图661,在ABC中,外角DCA=100,A=45.求B和ACB的度数.解:DCA=A+B(三角形的一个外角

10、等于和它不相邻的两个内角的和)DCA=100,A=45(已知)B=DCAA=10045=55(等式的性质)DCA+ACB=180(1平角=180)ACB=180DCA(等式的性质)DCA=100(已知)ACB=80(等量代换)2.如图,求证:(1)BDCA.(2)BDC=B+C+A.如果点D在线段BC的另一侧,结论会怎样?分析通过学生的探索活动,使学生进一步了解辅助线的作法及重要性,理解掌握三角形的内角和定理及推论.证法一:(1)连接AD,并延长AD,如图,则1是ABD的一个外角,2是ACD的一个外角.13.24(三角形的一个外角大于任何一个和它不相邻的内角)1+23+4(不等式的性质)即:B

11、DCBAC.(2)连结AD,并延长AD,如图.则1是ABD的一个外角,2是ACD的一个外角.1=3+B2=4+C(三角形的一个外角等于和它不相邻的两个内角的和)1+2=3+4+B+C(等式的性质)即:BDC=B+C+BAC证法二:(1)延长BD交AC于E(或延长CD交AB于E),如图.则BDC是CDE的一个外角.BDCDEC.(三角形的一个外角大于任何一个和它不相邻的内角)DEC是ABE的一个外角(已作)DECA(三角形的一个外角大于任何一个和它不相邻的内角)BDCA(不等式的性质)(2)延长BD交AC于E,则BDC是DCE的一个外角.BDC=C+DEC(三角形的一个外角等于和它不相邻的两个内

12、角的和)DEC是ABE的一个外角DEC=A+B(三角形的一个外角等于和它不相邻的两个内角的和)BDC=B+C+BAC(等量代换)设计意图:让学生接触各种类型的几何证明题,提高逻辑推理能力,培养学生的证明思路,特别是不等关系的证明题,因为学生接触较少,因此更需要加强练习让学生应用本节课所学的知识解决相关的问题,查找掌握不牢固的地方,进一步突出本节课的重点并加以巩固四、巩固提升,归纳总结本节课你有哪些收获(知识方面和操作方面)?在运用科学知识进行实践过程中,你具有了哪些能力?你是否想到最优的方法?在与同伴合作交流中,你对自己的表现满意吗?你的同伴中你认为最值得你学习的是哪几个人?(学生分组进行讨论

13、、交流,总结本节课学习的主要内容及收获)设计意图:学生结合本节课的学习,谈谈自己的收获和感受,并对同伴进行评价五、达标检测,反馈矫正1如图,已知ABCD,1=F,2=E,试猜想AF与DE的位置关系,并证明你的结论2已知,如图,B,C的外角平分线交于点D,若A=40,则D是多少度?你能将它一般化吗?试证明你的结论3如图,在中,AD平分BAC,CDAD于D.求证:ACDB设计意图:通过检测巩固当堂知识并准确的掌握学生的课堂学习效果,以方便课下有针对性的做好辅导六、布置作业,课后促学必做题:课本 第244页 习题67 第1、2题选做题:课本 第244页 习题67 第3、4题 设计意图:通过不同层次的

14、作业,让每一名学生都得到充分的提高,达到巩固新课知识,提高实际应用能力的目的板书设计:6.6关注三角形的外角引入例1例2学生板演区教学反思:教学中,帮助学生找三角形的外角是难点,特别是当一个角是某个三角形的内角,同时又是另一个三角形的外角时,困难就更大,解决这个难点的关键是讲清定义,分析图形,变换位置,理清思路。本节课的教学设计力图具有以下几个特色:充分挖掘学生的潜能,展示学生的思维过程,体现“学生是学习的主人”这一主题;从特殊到一般,从不完全归纳到合情推理,展示了一个完整的思维过程;在整个教学中尽可能的避免教学的单调性,因此编排了一题多解的训练,为发散性思维创设情境,调动学生学习的极大热情。

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服