1、简单的轴对称图形 教学目的 通过动手试验,使学生知道线段是轴对称图形,掌握线段的垂直子分线的定义和性质,并学会应用线段垂直平分线性质解决相关问题。 重点、难点 重点:线段垂直平分线上的点到线段两端的距离相等。 难点:运用线段垂直平分线性质解决问题。 教学过程 一、复习引入 1轴对称图形的定义是什么? 2线段是轴对称图形吗?它的两个端点是否关于某条直线成轴对称? 二、新课 1认识线段是轴对称图形,引出线段垂直平分线的定义。试验:按以下方法,看看线段是否是轴对称图形? 在半透明纸上画出线段AB和它和中点O,再过O点画出与AB垂直的直线CD,沿直线CD将纸对折,观察线段OA和线段OB是否重合? 显然
2、,线段OA和OB互相重合,因此,线段是轴对称图形。那么,线段的对称轴是哪一条呢? 线段垂直平分线的定义:垂直并且平分一条线段的直线称为这条线段的垂直平分线,或中垂线。如上图的直线 CD就是线段AB的垂直平分线。 2线段垂直平分线上的点到线段两端的距离相等。 在以上试验的基础上,同学们在直线CD上任意取一点M,连结 MA、MB,而后沿着直线CD折叠,观察MA和MB是否重合?再取一点试试,观察PA和PB是否重合?待同学们实验完毕,引导同学们归纳线段垂直平分线的性质。 线段垂直平分线上的点到线段两端的距离相等。 3线段垂直平分线性质的应用举例。 例1如右图所示,ABC中,BC10,边BC的垂直平分线分别交AB、BC于点E、D,BE6,求BCE的周长。 分析:要求BCE的周长,需知道BE、CE、BC的长度,从题目给出的条件来看,BE、BC的长度已经知道,而正点是线段BC的垂直平分线上的点,所以CE=BE,从而问题得到解决。例2如右图所示,直线MN和DE分别是线段 AB、BC的垂直平分线,它们交于P点,请问PA和 PC相等吗?为什么? 三、课堂练习课本P73练习第1、2题 四、课堂小结 线段垂直平分线的性质及其运用是本节课的重点,应用其性质我们可以证明两条线段相等。 五、作业 2如图2,BAC120,C30,DE是线段AC的垂直平分线,求:BAD的度数。