1、15.2.1平方差公式教学目标1、会推导平方差公式并掌握公式的结构特征,能运用公式进行简单的计算;2、了解平方差公式的几何背景,体会数形结合的思想方法。重点难点重点:平方差公式的推导及应用难点:用公式的结构特征判断题目能否使用公式教学设计一、板书标题,揭示教学目标教学目标1、会推导平方差公式并掌握公式的结构特征,能运用公式进行简单的计算;2、了解平方差公式的几何背景,体会数形结合的思想方法。二、指导学生自学自学内容与要求看教材:课本第151页-第153页,把你认为重要部分打上记号,完成第153页练习题。想一想:1、平方差公式实质是什么? 2、满足什么条件的两个多项才能运用平方差公式? 3、你对
2、152页思考中的图形理解吗? 8分钟后,检查自学效果三、学生自学,教师巡视学生认真自学,并完成P153练习,老师巡视,并指导学生完成练习。四、检查自学效果1、学生回答老师所提出的问题;2、你能根据下面的两个图形解释平方差公式吗?3、学生抢答P153练习结果,并要求学生是否有不同意见。4、学生板演: 计算:(1)x2+(y-x)(y+x) (2)20082-20092007(3)(-0.25x-2y)(-0.25x+2y) (4)(a+b)(a-b)-(3a-2b)(3a+2b)五、归纳,矫正,指导运用1、概念归纳:平方差公式的字母表示形式 (a+b)(a-b)=a2-b2其中a、b表示任意数,
3、也可以表示任意的单项式、多项式。即:两个数的和与这两个数的差的积,等于这两个数的平方差。2、应用:下列计算是否正确?如不正确,应怎样改正?(1)(a-4)(a+4)=a2-4(2)(2x+5)(2x-5)=2x2-25(3)(-a-b)(a+b)=a2-b2(4)(mn-1)(mn+1)=mn2-1计算: (1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b) (4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2)六、随堂练习1、用简便方法计算 (1)20011999 (2)9981002
4、2、计算: (1)(x+1)(x-1) (2)(m+2)(m-2) (3)(2x+1)(2x-1) (4)(x+5y)(x-5y)七、布置作业课本第156页 1 设计思想:新课程标准中明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。教师的职责在于向学生提供从事数学活动的机会,在活动中激发学生的学习潜能,引导学生积极自主探索、合作交流与实践创新。”在教学设计时,我以新课标理念为指导思想,以多媒体教学课件为辅助教学手段,突出对平方差公式的推导和应用。自主探究、举一反三、语言叙述、推导验证、几何解释、应用巩固等活动都是根据学生的认知特点和所学知识的特征,让学生经历数学知识的形成与应用过程,以促进学生有效学习。在教学活动的组织中始终注意:(1)以问题为活动的核心。在组织活动前,结合学习内容和学生实际,更好地使用教科书(如对平方差公式进行几何解释时,将书中图形一分为二),创设问题情境(2)促进学生发展是活动的目的。数学教育要以获取知识为首要目标转变为首先关注人的发展,这是义务教育阶段数学课程的基本理念和基本出发点因此,本节课我组织活动的目的,不是为了单纯地传授知识,而是注意让学生在参与平方差公式的探究推导、归纳证明、解释应用的过程中促进学生代数推理能力、表达能力、与人合作意识、数学思想方法等各方面的进一步发展。