1、11.31 一次函数与一元一次方程教学目的1、通过数形结合领悟一次函数与一次一次方程之间 的联系,会用一次函数的图象描述一元一次方程的解;2、通过具体问题初步体会运用函数、方程解决有关问题。教学重点一元一次方程kx+b=0(k、b为常数,k0)与一次函数y=kx+b(k、b为常数,k0)的关系。教学难点图像法解一元一次方程的理念的形成教学过程一、出示教学目标和课题,提出教学要求二、给出自学要求自学内容和要求看教材:课本第123页-第124页,把你认为重要部分打上记号。想一想:1、一次函数与一元一次方程有什么不同? 2、一元一次方程的解实际是一次函数什么值? 3、用一次函数解一元一次方程通过什么
2、解?三、自学效果检查方程2x+20=0函数y=2x+20观察思考:二者之间有什么联系?从数上看:方程2x+20=0的解,是函数y=2x+20的值为0时,对应自变量的值从形上看:函数y=2x+20与x轴交点的横坐标即为方程2x+20=0的解关系: 由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k0)的形式所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值 从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值例1 一个物体现在的速度是5m/s,其速度每秒增加2m/s,再过几秒它的速度为17m/s?(用两种方法求解)解法一:设再过x秒物体速度为17m/s由
3、题意可知:2x+5=17 解之得:x=6解法二:速度y(m/s)是时间x(s)的函数,关系式为:y=2x+5 当函数值为17时,对应的自变量x值可通过解方程2x+5=17得到x=6 解法三:由2x+5=17可变形得到:2x-12=0从图象上看,直线y=2x-12与x轴的交点为(6,0)得x=6 例2 利用图象求方程6x-3=x+2的解 ,并笔算检验解法一:由图可知直线y=5x-5与x轴交点为(1,0),故可得x=1 我们可以把方程6x-3=x+2看作函数y=6x-3与y=x+2在何时两函数值相等,即可从两个函数图象上看出,直线y=6x-3与y=x+2的交点,交点的横坐标即是方程的解解法二:由图
4、象可以看出直线y=6x-3与y=x+2交于点(1,3),所以x=1 小结 本节课从解具体一元一次方程与当自变量x为何值时一次函数的值为0这两个问题入手,发现这两个问题实际上是同一个问题,进而得到解方程kx+b=0与求自变量x为何值时,一次函数y=kx+b值为0的关系,并通过活动确认了这个问题在函数图象上的反映经历了活动与练习后让我们更熟练地掌握了这种方法虽然用函数解决方程问题未必简单,但这种数形结合思想在以后学习中有很重要的作用 练习:用不同种方法解下列方程:12x-3=x-2 2x+3=2x+1 补充练习1.某单位急需用车,但又不准备买车,他们准备和一个体车主或一国有出租车公司其中一家签让合同设汽车每月行驶x千米,应付给个体车主的月费用是y1元,应付给出租车公司的月费用是y2元,y1、y2分别是x之间函数关系如下图所示每月行驶的路程等于多少时,租两家车的费用相同,是多少元?242:练习1(1)(2)课后作业 习题1131、2、5、8题