1、22.1.2 二次函数y=ax2的图象和性质【知识与技能】1.会用描点法画二次函数y=ax2的图象,理解抛物线的有关概念;2.掌握二次函数y=ax2的性质,能确定二次函数y=ax2的表达式.【过程与方法】通过画出简单的二次函数y=x2,y=-x2等探索出二次函数y=ax2的性质及图象特征.【情感态度】使学生经历探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯.【教学重点】1.二次函数y=ax2的图象的画法及性质;2.能确定二次函数y=ax2的解析式.【教学难点】1.用描点法画二次函数y=ax2的图象,探索其性质;2.能依据二次函数y=ax2的有关性质解决问题.一、情
2、境导入,初步认识问题1在八年级下册,我们学习的一次函数的图象是一条直线,二次函数的图象是什么形状呢?通常怎样画一个函数的图象?【教学说明】通过对问题1的思考,可激发学生的求知欲望,想尝试运用列表法画出一个二次函数的图象.问题2 你能画出二次函数y=x2的图象吗?【教学说明】学生分组画y=x2的图象,教师巡视,对于不正确的给予指导,尤其应关注学生的列表和连线,然后给予讲评,提醒注意的问题,并让学生发表不同的意见,达成共识.二、思考探究,获取新知问题1你能说说二次函数y=x2的图象有哪些特征吗?不妨试试看,并与同伴交流.【教学说明】教师应在学生的交流过程中,听取他们各自的看法,对于通过观察而归纳出
3、的结论叙述较好的给予肯定,对不够完整的或叙述欠佳的学生给予鼓励,并予以诱导.在这一活动过程中,让学生们逐步积累对二次函数y=ax2的图象及其简单性质的感性认识.问题2请在同一坐标系中,画出下列函数的图象,并通过图象谈谈它们的特征及其差异.y=x2与y=2x2.【教学说明】在这一活动过程中,教师可将全班同学进行适当分组,分别完成两个图象的画图,并结合图象给予恰当的描述.教师巡视,适时点拨,最后在黑板上与全班同学一起进行归纳总结.问题3(1)在同一直面坐标系中,画出函数y=-x2,y=-x2,y=-2x2的图象,并考虑这些抛物线有什么共同点和不同点?(2)当a0时,二次函数y=ax2的图象有什么特
4、点?【教学说明】教师在处理问题时可让学生画图后回答,可让学生从开口方向、最值、增减性三个方面作答,最后教师以课件方式展示结论.【归纳结论】1.二次函数y=ax2的图象是一条开口向上或向下的抛物线.一般地,二次函数y=ax2+bx+c的图象叫做抛物线y=ax2+bx+c.2.二次函数y=ax2的图象及其性质,如下表所示:3.二次函数y=ax2的开口大小与a的关系:|a|越大,开口越小;|a|越小,开口越大.|a|值相同,开口形状相同.【教学说明】针对师生共同完成的归纳总结,教师应着重强调两点:(1)a的符号决定着抛物线的开口方向,|a|的大小,影响抛物线的开口大小;(2)对于函数的增减性及最大(
5、小)值,教师应引导学生通过图象进行分析,利用图象的直观性获得结论,切忌死记硬背,让同学感受到数形结合思想方法是函数问题中最重要的思想方法之一,增强他们的学习兴趣.三、运用新知,深化理解1.若抛物线y=ax2与y=4x2的形状及开口方向均相同,则a= .2.下列关于二次函数y=ax2(a0)的说法中,错误的是( )A.它的图象的顶点是原点B.当a0,在x0时,y随x的增大而增大3.请在同一坐标系中画出函数y1=x和y2=-x2的图象,结合图象,指出当x取何值时,y1y2;当x取何值时,y10时,若x增大,y怎样变化?当x0时,a值越大,开口越小,a值越小,开口越大;当a0或xy2,当-1xy1.
6、4.解:(1)设这个二次函数解析式为y=ax2,将(-1,)代入得a=,所以y=x2.(2)略(3)当x0时,y随x的增大而增大;当x0时,y随x的增大而减小.(4)当x=0时,y有最小值,y最小值=0.四、师生互动,课堂小结1.画二次函数y=ax2的图象时,有哪些地方是你需关注的?2.你是如何理解并熟记抛物线y=ax2的性质的?3.本节课你还存在哪些疑问?【教学说明】问题1旨在提醒学生画图过程中列表时应以原点为中心,左右对称选取点,连线时应用光滑曲线连接;问题2是为了进一步突出数形结合思想在函数问题的解决过程中的重要性;而问题3是想了解学生哪部分没学好,难学,以便教师可以进行针对性辅导.1.布置作业:教材习题22.1第3、4、11题.2.完成创优作业中本课时练习的“课时作业”部分.本课时的设计比较注重让学生动手操作,让学生通过画二次函数的图象初步掌握其性质,画图的过程中需注意引导学生与其他函数的图象与性质进行对比.本课的目的是要让学生通过动手操作,经历探索归纳的思维过程,逐步获得图象传达的信息,熟悉图象语言,进而形成函数思想.