1、广东省汕头市龙湖实验中学九年级数学上册23.1 图形的旋转(第1课时)教案 新人教版教学内容 1主要内容: 图形的旋转及其有关概念:包括旋转、旋转中心、旋转角图形旋转的有关性质:对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前、后的图形全等通过不同形式的旋转,设计图案中心对称及其有关概念:中心对称、对称中心、关于中心的对称点;关于中心对称的两个图形中心对称的性质:对称点所连线段都经过对称中心,而且被对称中心所平分;关于中心对称的两个图形是全等图形中心对称图形:概念及性质:包括中心对称图形、对称中心关于原点对称的点的坐标:两个点关于原点对称时,它们的坐标符号都相反,即
2、点P(x,y)关于原点的对称点为P(-x,-y)课题学习图案设计 2本单元在教材中的地位与作用: 学生通过平移、平面直角坐标系,轴对称、反比例函数、四边形等知识的学习,初步积累了一定的图形变换数学活动经验本章在此基础上,让学生进行观察、分析、画图、简单图案的欣赏与设计等操作性活动形成图形旋转概念它又对今后继续学习数学,尤其是几何,包括圆等内容的学习起着桥梁铺垫之作用教学目标 1知识与技能 了解图形的旋转的有关概念并理解它的基本性质 了解中心对称的概念并理解它的基本性质 了解中心对称图形的概念;掌握关于原点对称的两点的关系并应用;再通过几何操作题的练习,掌握课题学习中图案设计的方法 2过程与方法
3、 (1)让学生感受生活中的几何,通过不同的情景设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题 (2)通过复习图形旋转的有关概念从中归纳出“对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前后的图形全等”等重要性质,并运用它解决一些实际问题 (3)经历复习图形的旋转的有关概念和性质,分析不同的旋转中心,不同的旋转角,出现不同的效果并对各种情况进行分类 (4)复习对称轴和轴对称图形的有关概念,通过知识迁移讲授中心对称图形和对称中心的有关内容,并附加练习巩固这个内容 (5)通过几何操作题,探究猜测发现规律,并给予证明,附加例题进一步巩固 (6)复习中心对称图形和对
4、称中心的有关概念,然后提出问题,让学生观察、思考,老师归纳得出中心对称图形和对称中心的有关概念,最后用一些例题、练习来巩固这个内容 (7)复习平面直角坐标系的有关概念,通过实例归纳出两个点关于原点对称时,坐标符号之间的关系,并运用它解决一些实际问题 (8)通过复习平移、轴对称、旋转等有关概念研究如何进行图形设计 3情感、态度与价值观 让学生经历观察、操作等过程,了解图形旋转的概念,从事图形旋转基本性质的探索活动,进一步发展空间观察,培养运动几何的观点,增强审美意识让学生通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣让学生从事应用所学的知识进行图案设计
5、的活动,享受成功的喜悦,激发学习热情教学重点 1图形旋转的基本性质 2中心对称的基本性质 3两个点关于原点对称时,它们坐标间的关系教学难点 1图形旋转的基本性质的归纳与运用 2中心对称的基本性质的归纳与运用教学关键 1利用几何直观,经历观察,产生概念; 2利用几何操作,通过观察、探究,用不完全归纳法归纳出图形的旋转和中心对称的基本性质单元课时划分 本单元教学时间约需10课时,具体分配如下: 231 图形的旋转 3课时 232 中心对称 4课时 233 课题学习;图案设计 1课时 教学活动、习题课、小结 2课时教学内容 1什么叫旋转?旋转中心?旋转角? 2什么叫旋转的对应点?教学目标 了解旋转及
6、其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题 通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题重难点、关键 1重点:旋转及对应点的有关概念及其应用 2难点与关键:从活生生的数学中抽出概念教学过程(一)板书标题,呈现教学目标:了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题 通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题(二)引导学生自学:阅读课本56开始到P57的“探究”:(1)知道图形旋转的概念,理解旋转中心、旋转角.
7、(2)体会图形旋转的特点.(3)会画简单图形绕某点进行旋转之后的图形(学习重点).(三)学生自学,教师巡视:学生认真自学,并完成P40练习1(四)检查自学效果: (学生活动)请同学们完成下面各题1将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形2如图,已知ABC和直线L,请你画出ABC关于L的对称图形ABC3圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗? (口述)老师点评并总结: (1)平移的有关概念及性质。 (2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它既有的一些性质。(3)什么叫轴对称图形?(五)小结归纳,指导应用 我们前面已经复习平移等有关内容,
8、生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究 1请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度? (口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心如果从现在到下课时针转了_度,分针转了_度,秒针转了_度 2再看我自制的好像风车风轮的玩具,它可以不停地转动如何转到新的位置?(老师点评略) 3第1、2两题有什么共同特点呢? 共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度 像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中
9、心,转动的角叫做旋转角 如果图形上的点P经过旋转变为点P,那么这两个点叫做这个旋转的对应点 下面我们来运用这些概念来解决一些问题 例1如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到OEF,在这个旋转过程中: (1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置? 解:(1)旋转中心是O,AOE、BOF等都是旋转角 (2)经过旋转,点A和点B分别移动到点E和点F的位置 例2(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形 (1)这个图案可以看做是哪个“基本图案”通过旋转得到的? (2)请画出旋转中心和旋转角(3)指出,经过旋转,点A、B、C、D分别移到什么位置?(老师点评)(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的(2)画图略(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H 最后强调,这个旋转中心是固定的,即正方形对角线的交点,但旋转角和对应点都是不唯一的(六)课堂练习教材P65 练习1、2、3课外作业:感悟第39-41页