1、广东省汕头市龙湖实验中学九年级数学上册23.1 图形的旋转(第2课时)教案 新人教版教学内容 1对应点到旋转中心的距离相等 2对应点与旋转中心所连线段的夹角等于旋转角 3旋转前后的图形全等及其它们的运用教学目标 理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等掌握以上三个图形的旋转的基本性质的运用重难点、关键 1重点:图形的旋转的基本性质及其应用 2难点与关键:运用操作实验几何得出图形的旋转的三条基本性质教学过程(一)复习引入 (学生活动)老师口问,学生口答 1什么叫旋转?什么叫旋转中心?什么叫旋转角? 2什么叫旋转的对应点? 3请独立完成
2、下面的题目如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?(老师点评)分析:能看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60、120、180、240、300形成的(二)板书标题,呈现教学目标:理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等掌握以上三个图形的旋转的基本性质的运用(三)引导学生自学:阅读P57-59页,完成58、59页的练习,并思考下列问题:1旋转作图应注意哪几个方面? 2你对运用旋转知识作图有什么看法?6分钟后,检查自学效果(四)学生自学,教师巡视:学生认真自
3、学,教师巡视学生练习完成的情况。(四)检查自学效果: 请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(ABC),移去硬纸板(分组讨论)根据图回答下面问题(一组推荐一人上台说明) 1线段OA与OA,OB与OB,OC与OC有什么关系? 2AOA,BOB,COC有什么关系? 3ABC与ABC形状和大小有什么关系? 老师点评:1OA=OA,OB=OB,OC=OC,也就是对应点到旋转中心相等 2AOA=BOB=COC,我们把这三个相等的角
4、,即对应点与旋转中心所连线段的夹角称为旋转角 3ABC和ABC形状相同和大小相等,即全等 综合以上的实验操作和刚才作的(3),得出 (1)对应点到旋转中心的距离相等; (2)对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前、后的图形全等例1如图,ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B对应点的位置,以及旋转后的三角形分析:绕C点旋转,A点的对应点是D点,那么旋转角就是ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即BCB=ACD,又由对应点到旋转中心的距离相等,即CB=CB,就可确定B的位置,如图所示 解:(1)连结CD (2)以CB为一边作BCE,使得BCE=A
5、CD (3)在射线CE上截取CB=CB 则B即为所求的B的对应点 (4)连结DB 则DBC就是ABC绕C点旋转后的图形 例2如图,四边形ABCD是边长为1的正方形,且DE=,ABF是ADE的旋转图形 (1)旋转中心是哪一点? (2)旋转了多少度? (3)AF的长度是多少?(4)如果连结EF,那么AEF是怎样的三角形? 分析:由ABF是ADE的旋转图形,可直接得出旋转中心和旋转角,要求AF的长度,根据旋转前后的对应线段相等,只要求AE的长度,由勾股定理很容易得到ABF与ADE是完全重合的,所以它是直角三角形 解:(1)旋转中心是A点 (2)ABF是由ADE旋转而成的B是D的对应点 DAB=90就
6、是旋转角 (3)AD=1,DE= AE= 对应点到旋转中心的距离相等且F是E的对应点 AF= (4)EAF=90(与旋转角相等)且AF=AE EAF是等腰直角三角形 (五)应用拓展例3如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系 分析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明 解:四边形ABCD、四边形AKLM是正方形 AB=AD,AK=AM,且BAD=KAM为旋转角且为90 ADM是以A为旋转中心,BAD为旋转角由ABK旋转而成的BK=DM(六)课堂训练 课本5961页(七)归纳小结(学生总结,老师点评) 本节课应掌握: 1对应点到旋转中心的距离相等; 2对应点与旋转中心所连线段的夹角等于旋转角;3旋转前、后的图形全等及其它们的应用(八)课后作业感悟第42-44页