1、分式的基本性质课 题 3.1.1分式的基本性质课型新授课教材分析 本章的主要内容包括:分式的概念与基本性质,分式的约分与乘法、除法,分式的通分与加法、减法,比和比例,分式方程的解法。其中,31 节引进分式的概念,讨论分式的基本性质是全章的理论基础部分。学情分析分式是“整式”之后对代数式的进一步研究,所以研究方法与整式相同。如:让学生经历用字母表示现实情境中数量关系(分式、分式方程)的过程,经历通过观察、归纳、类比、猜想获得分式基本性质.教学目标1、90%了解分式的概念,80%能判断一个代数式是否为分式,会求分式的值。2、70%理解分式有意义的条件;分式值为零的条件。教学重难点 重点:分式的概念
2、,分式的基本性质难点:分式有意义及分式值是零的条件教学准备多媒体投影、小黑板教学课时一课时教学过程学习任务活动设计(一)回顾旧知 1、 什么是整式?什么是单项式?多项式?单独的一个数或字母是不是整式?2、判断下列各代数式是否是单项式如果是,请指出它的系数与次数:(1)x1(2) (3)abc (4)二探究新知1.完成“情境导航”提出的问题。2、完成书本70页“交流与发现”提出的问题小组内部相互检查思考:你所列代数式是不是整式?为什么不是?它们有什么共同点?3.自主学习分式的概念(书本70页),请你将对分式理解用自己的语言描述一下,并列举两个分式的例子。知识链接:初中数学的运算可分为数的运算和式
3、的运算,我们可仿照有理数的分类(有理数可分为整数和分数),将有理式分为整式和分式。小结:形如的式子,当A、B都是 ,且B中含有 时,这样的式子叫分式,其中A叫分式的,B叫分式的_。 (1)请举几个分式的例子:_(2)因为在除法运算中除数不能为0,所以分式中分母的值也不能 . 当分式的分母的值为 时,分式 .(3)分式的概念中应注意的问题分母中含有 如同分数一样,分式的分母不能为 4 若表示分式且有意义,则B 5若分式的值为零,则A0且B 三应用例1:(1)当a=30 L=600时,求分式的值 (1) 当a取何值时,分式有意义?例2 :(1)当a取何值时,分式无意义(2)当a取何值时,分式的值为
4、0?四练习(1)下列各式中,哪些是整式?哪些是分式?,中,是整式是分式区分整式和分式的关键是看注意一些特殊的代数式,如:,是常数,所以是整式。(2) 当x取何值时,分式有意义?(3) 当x取何值时,分式无意义? (4) 当x取何值时,分式的值为0 五、课堂小结这节课你有什么收获?六、当堂检测1.下列各有理式中,哪些是整式?哪些是分式?(1) (2) (3) (4) (5)2.当 时,则分式 _ 有意义.3.若分式 的值等于零,则应满足的条件是 . 一、感情调节(2mins)学生回顾旧知,为本节课打好基础。二、自学提示(8mins)(自主学习及任务设计)(一)阅读教材70页(5mins)1静心默读,并用红笔标出你认为重要的内容。2独立完成左面的问题(2mins)。3组内相互校对答案(1mins)。4教师个别指导。(二)合作探究(7mins)1快速阅读教材70页例1.(2mins)2在右面尝试独立做出例13组内交流结论.三、互帮学习(10mins)1.互说:同桌结对,起立互说例2的解题思路或过程;2互帮,组际帮扶;3互帮中不能解决的问题,由抄板手写到小黑板上;4.师生互帮(交流展示,精讲点拨).【知者加速】知者帮惑者五、当堂检测(8mins)布置作业板书设计教学反思