收藏 分销(赏)

中考试卷批注.doc

上传人:xrp****65 文档编号:7414414 上传时间:2025-01-03 格式:DOC 页数:13 大小:781KB
下载 相关 举报
中考试卷批注.doc_第1页
第1页 / 共13页
中考试卷批注.doc_第2页
第2页 / 共13页
点击查看更多>>
资源描述
2011年河北省中考数学试卷 一、选择题(共12小题,1-6小题每小题2分,7-12小题,每题3分,满分30分) 1、零指数幂。 (2011•河北)计算30的结果是(  ) A、3 B、30 C、1 D、0 2、余角和补角。 (2011•河北)如图,∠1+∠2等于(  ) A、60° B、90° C、110° D、180° 3、提公因式法与公式法的综合运用。 (2011•河北)下列分解因式正确的是(  ) A、﹣a+a3=﹣a(1+a2) B、2a﹣4b+2=2(a﹣2b) C、a2﹣4=(a﹣2)2 D、a2﹣2a+1=(a﹣1)2 4、整式的除法;合并同类项;幂的乘方与积的乘方。 (2011•河北)下列运算中,正确的是(  ) A、2x﹣x=1 B、x+x4=x5 C、(﹣2x)3=﹣6x3 D、x2y÷y=x2 5、一次函数的性质。 (2011•河北)一次函数y=6x+1的图象不经过(  ) A、第一象限 B、第二象限 C、第三象限 D、第四象限 6、:展开图折叠成几何体 (2011•河北)将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的(  ) A、面CDHE B、面BCEF C、面ABFG D、面ADHG 7、本题考查了方差的意义。 (2011•河北)甲、乙、丙三个旅行团的游客人数都相等,且毎团游客的平均年龄都是32岁,这三个团游客年龄的方差分别是S甲2=27,S乙2=19.6,S丙2=1.6,导游小王最喜欢带游客年龄相近的团队,若在三个团中选择一个,则他应选(  ) A、甲团 B、乙团 C、丙团 D、甲或乙团 8、二次函数的应用 (2011•河北)一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面函数关系式:h=﹣5(t﹣1)2+6,则小球距离地面的最大高度是(  ) A、1米 B、5米 C、6米 D、7米 9、本题考查了翻折变换和相似三角形的判定与性质,翻折变换后的图形全等及两三角形相似,各边之比就是相似比. (2011•河北)如图,在△ABC 中,∠C=90°,BC=6,D,E 分别在 AB、AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为(  ) A、 B、2 C、3 D、4 . 10、本题考查了三角形的三边关系:三角形两边之和大于第三边,两边差小于第三边。 (2011•河北)已知三角形三边长分别为2,x,13,若x为正整数 则这样的三角形个数为(  ) A、2 B、3 C、5 D、13 11、本题考查了一次函数的综合运用,正比例函数的定义。 (2011•河北)如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y和x,则y与x的函数图象大致是(  ) A、 B、 C、 D、 12、反比例函数综合题;反比例函数的性质;反比例函数图象上点的坐标特征;三角形的面积。 (2011•河北)根据图1所示的程序,得到了y与x的函数图象,如图2.若点M是y轴正半轴上任意一点,过点M作PQ∥x轴交图象于点P,Q,连接OP,OQ.则以下结论: ①x<0 时, ②△OPQ的面积为定值. ③x>0时,y随x的增大而增大. ④MQ=2PM. ⑤∠POQ可以等于90°.其中正确结论是(  ) A、①②④ B、②④⑤ C、③④⑤ D、②③⑤ 二、填空题(共6小题,每小题3分,满分18分) 13、考查了实数的大小的比较. (2011•河北),π,﹣4,0这四个数中,最大的数是 π . 14、考查了菱形的性质以及数轴上点的距离求法。 (2011•河北)如图,已知菱形ABCD,其顶点A,B在数轴上对应的数分别为﹣4和1,则BC= 5 . 15、考察非负数的性质:绝对值。 (2011•河北)若|x﹣3|+|y+2|=0,则x+y的值为 1 . 16、本题考查了圆周角定理、三角形外角的性质以及等腰三角形的性质。 (2011•河北)如图,点0为优弧所在圆的圆心,∠AOC=108°,点D在AB延长线上,BD=BC,则∠D= 27° . 17、考查了平移的性质以及等边三角形的性质。 (2011•河北)如图1,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A’B’D’的位置,得到图2,则阴影部分的周长为 2 . 18、考查了通过特例分析从而归纳总结出一般结论的能力。 (2011•河北)如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”. 如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”. 若小宇从编号为2的顶点开始,第10次“移位”后,则他所处顶点的编号是 3 . 三、解答题(共8小题,满分72分) 19、考查了二次根式的混合运算以及二元一次方程的解。 (2011•河北)已知是关于x,y的二元一次方程的解,求(a+1)(a﹣1)+7的值. 解:∵是关于x,y的二元一次方程的解, ∴2=+a, a=, ∴(a+1)(a﹣1)+7=a2﹣1+7=3﹣1+7=9. 20考察了作图-位似变换。 、(2011•河北)如图,在6×8网格图中,每个小正方形边长均为1,点0和△ABC的顶点均为小正方形的顶点. (1)以O为位似中心,在网络图中作△A′B′C′,使△AA′B′C′和△ABC位似,且位似比为 1:2; (2)连接(1)中的AA′,求四边形AA′C′C的周长.(结果保留根号) 解:(1)如图所示: (2)AA′=CC′=2. 在Rt△OA′C′中, OA′=OC′=2,得A′C′=2; 同理可得AC=4. ∴四边形AA′C′C的周长=4+6. 21、本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比. (2011•河北)如图,一转盘被等分成三个扇形,上面分别标有﹣1,1,2中的一个数,指针位置固定,转动转盘后任其自由停止,这时,某个扇形会恰好停在指针所指的位置,并相应得到这个扇形上的数(若指针恰好指在等分线上,当做指向右边的扇形>. (1)若小静转动转盘一次,求得到负数的概率; (2)小宇和小静分别转动转盘一次,若两人得到的数相同,则称两人“不谋而合”.用列表法(或画树状图)求两人“不谋而合”的概率. 解:(1)∵转盘被等分成三个扇形,上面分别标有﹣1,1,2, ∴小静转动转盘一次,得到负数的概率为:; (2)列表得: ∴一共有9种等可能的结果, 两人得到的数相同的有3种情况, ∴两人“不谋而合”的概率为 = . 22、分式方程的应用;一元一次不等式的应用。 (2011•河北)甲、乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工:若甲、乙 共同整理20分钟后,乙需再单独整理20分钟才能完工. (1)问乙单独整理多少分钟完工? (2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工? 解:(1)设乙单独整理x分钟完工,根据题意得: 解得x=80, 经检验x=80是原分式方程的解. 答:乙单独整理80分钟完工. (2)设甲整理y分钟完工,根据题意,得 解得:y≥25 答:甲至少整理25分钟完工. 23、此题考查的知识点是正方形的性质、全等三角形的判定和性质、平行四边形的判定及作图。 (2011•河北)如图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG. (1)求证:①DE=DG; ②DE⊥DG (2)尺规作图:以线段DE,DG为边作出正方形DEFG(要求:只保留作图痕迹,不写作法和证明); (3)连接(2)中的KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明你的猜想: (4)当时,请直接写出的值. (1)证明:∵四边形ABCD是正方形, ∴DC=DA,∠DCE=∠DAG=90°. 又∵CE=AG, ∴△DCE≌△GDA, ∴DE=DG, ∠EDC=∠GDA, 又∵∠ADE+∠EDC=90°, ∴∠ADE+∠GDA=90°, ∴DE⊥DG. (2)如图. (3)四边形CEFK为平行四边形. 证明:设CK、DE相交于M点, ∵四边形ABCD和四边形DEFG都是正方形, ∴AB∥CD,AB=CD,EF=DG,EF∥DG, ∵BK=AG, ∴KG=AB=CD, ∴四边形CKGD是平行四边形, ∴CK=DG=EF,CK∥DG, ∴∠KME=∠GDE=∠DEF=90°, ∴∠KME+∠DEF=180°, ∴CK∥EF, ∴四边形CEFK为平行四边形. (4)=. 24、本题考查一次函数的应用;折线统计图;算术平均数。 (2011•河北)已知A、B两地的路程为240千米.某经销商每天都要用汽车或火车将x吨保鲜品一次 性由A地运往B地.受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订. 现有货运收费项目及收费标准表、行驶路程s(千米)与行驶时间t(时)的函数图象(如图1)、上周货运量折线统计图(如图2)等信息如下: 货运收费项目及收费标准表 运输工具 运输费单价 元/(吨•千米) 冷藏费单价 元/(吨•时) 固定费用 元/次 汽车 2 5 200 火车 1.6 5 2280 (1)汽车的速度为 60 千米/时,火车的速度为 100 千米/时: (2)设每天用汽车和火车运输的总费用分别为y汽(元)和y火(元),分别求y汽、y火与 x的函数关系式(不必写出x的取值范围),及x为何值时y汽>y火(总费用=运输费+冷藏费+固定费用) (3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输总费用较省? 解:(1)根据图表上点的坐标为:(2,120),(2,200), ∴汽车的速度为 60千米/时,火车的速度为 100千米/时, 故答案为:60,100; (2)依据题意得出: y汽=240×2x+×5x+200, =500x+200; y火=240×1.6x+×5x+2280, =396x+2280. 若y汽>y火,得出500x+200>396x+2280. ∴x>20; (3)上周货运量=(17+20+19+22+22+23+24)÷7=21>20, 从平均数分析,建议预定火车费用较省. 从折线图走势分析,上周货运量周四(含周四)后大于20且呈上升趋势,建议预订火车费用较省. 25、本题考察直线与圆的位置关系;点到直线的距离;平行线之间的距离;旋转的性质;解直角三角形。 (2011•河北)如图1至图4中,两平行线AB、CD间的距离均为6,点M为AB上一定点. 思考 如图1,圆心为0的半圆形纸片在AB,CD之间(包括AB,CD),其直径MN在AB上,MN=8,点P为半圆上一点,设∠MOP=α. 当α= 90 度时,点P到CD的距离最小,最小值为 2 . 探究一 在图1的基础上,以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO= 30 度,此时点N到CD的距离是 2 . 探究二 将如图1中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB,CD之间顺时针旋转. (1)如图3,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值; (2)如图4,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围. (参考数椐:sin49°=,cos41°=,tan37°=.) 解:思考:根据两平行线之间垂线段最短,直接得出答案,当α=90度时,点P到CD的距离最小, ∵MN=8, ∴OP=4, ∴点P到CD的距离最小值为:6﹣4=2. 故答案为:90,2; 探究一:∵以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2, ∵MN=8,MO=4,OY=4, ∴UO=2, ∴得到最大旋转角∠BMO=30度,此时点N到CD的距离是 2; 探究二 (1)由已知得出M与P的距离为4, ∴PM⊥AB时,点MP到AB的最大距离是4,从而点P到CD的最小距离为6﹣4=2, 当扇形MOP在AB,CD之间旋转到不能再转时,弧MP与AB相切, 此时旋转角最大,∠BMO的最大值为90°; (2)如图3,由探究一可知,点P是弧MP与CD的切线时,α大到最大,即OP⊥CD,此时延长PO交AB于点H,α最大值为∠OMH+∠OHM=30°+90°=120°, 如图4,当点P在CD上且与AB距离最小时,MP⊥CD,α达到最小, 连接MP,作HO⊥MP于点H,由垂径定理,得出MH=3,在Rt△MOH中,MO=4, ∴sin∠MOH==, ∴∠MOH=49°, ∵α=2∠MOH, ∴α最小为98°, ∴α的取值范围为:98°≤α≤120°. 26、考查了二次函数与点的关系,以及三角形面积的求解方法等知识. (2011•河北)如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以毎秒1个单位长的速度运动t秒(t>0),抛物线y=x2+bx+c经过点O和点P,已知矩形ABCD的三个顶点 为 A (1,0),B (1,﹣5),D (4,0). (1)求c,b (用含t的代数式表示): (2)当4<t<5时,设抛物线分别与线段AB,CD交于点M,N. ①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值; ②求△MPN的面积S与t的函数关系式,并求t为何值时,; (3)在矩形ABCD的内部(不含边界),把横、纵 坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围. 解:(1)把x=0,y=0代入y=x2+bx+c,得c=0, 再把x=t,y=0代入y=x2+bx,得t2+bt=0, ∵t>0, ∴b=﹣t; (2)①不变. 如图6,当x=1时,y=1﹣t,故M(1,1﹣t), ∵tan∠AMP=1, ∴∠AMP=45°; ②S=S四边形AMNP﹣S△PAM=S△DPN+S梯形NDAM﹣S△PAM=(t﹣4)(4t﹣16)+[(4t﹣16)+(t﹣1)]×3﹣(t﹣1)(t﹣1)=t2﹣t+6. 解t2﹣t+6=, 得:t1=,t2=, ∵4<t<5, ∴t1=舍去, ∴t=. (3)<t<. X 13
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 应用文书 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服