资源描述
《19.2.3全等三角形的判定(角边角)》教案
【教学目标】:
1、使学生理解ASA的内容,能运用ASA全等识别法来识别三角形全等进而说明线段或角相等;
2、通过画图、实验、发现、应用的过程教学,树立学生知识源于实践用于实践的观念。使学生体会探索发现问题的过程。经历自己探索出AAS的三角形全等识别及其应用。
【重点难点】:
1、难点:三角形全等的识别法ASA和AAS及应用;
2、重点:利用三角形全等的识别法,间接说明角相等或线段相等。
【重点难点】:剪刀、卡纸。
【教学过程】:
一、复习
1、什么叫做全等三角形,如何识别两个三角形全等?
(能够完全重合的两个三角形叫做全等三角形。识别两个三角形全等的方法有:SSS;SAS)。
2、叙述SSS、SAS的内容。
3、已知:如图,,,请问再加上什么条件下,△ABC≌△,并说明理由。
(,根据SSS;,根据SAS)。
二、新授
1、引入:请问到本节为止,我们探讨两个三角形满足三个条件的哪几种情况,情况如何呢?
(如果两个三角形有三条边分别对应相等或两个三角形有两条边及其夹角分别对应相等,那么这两个三角形就一定全等。如果两个三角形有三个角分别对应相等,或两个三角形的两边及其一边所对的角对应相等,那么这两个三角形不一定全等。)
还有哪些情况还没有探讨呢?
(如果两个三角形的两个角及一条边分别对应相等,这两个三角形一定全等吗?)
本节我们探讨两个三角形的两个角及一条边分别对应相等,这两个三角形是否全等的课题。
2、问题1:如果把已知一个三角形的两角及一边,那么有几种可能的情况呢?
(一种情况是两个角及两角的夹边;另一种情况是两个角及其中一角的对边。)
每一种情况下得到的三角形都全等吗?
3、请同学们动手做一个实验:同桌两位同学为一组。
(1)共同商定画出任意一条线段AB,与两个角、()
(2)两位同学各自在硬纸板上画线段的长等于商定的线段AB的长,在的同旁,画等于商定的,画等于商定的,设与相交于,便得△。
(3)用剪刀各自剪出△,将同桌同学剪出的两个三角形重叠在一起发现了什么?其他各桌的同学是否也有同样的结论呢?
同学们各抒己见后,总结:对于已知两个角和一条线段,以该线段为夹边,所画的三角形都是全等的.
由此得到另一个识别全等三角形的简便方法:
如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等.简记为“角边角”或简记为(A.S.A.)。
4、问题2:试说明ASA全等识别法与相似三角形的识别法有什么类似的。
(两个角对应相等的两个三角形相似,当这两个角的公共边相等时,这两个三角形的形状、大小都相同,即为全等三角形。)
5、思考:如图,如果两个三角形有两个角及其中一个角的对边分别对应相等,
那么这两个三角形是否一定全等?
动手画一画:比如,,,你能画这个三角形吗?
提示:这里的条件与实验中的条件有什么相同点与不同点?你能将它转化为实验中的条件吗?
你画的三角形与同伴画的一定全等吗?
现在两组同学按如果角所对的边为画,另两组同学换两个角和一条线段,试试看,你们得出什么结论?
同学们各抒己见后,总结:对于已知两个角和一条线段,以该线段为夹边,所画的三角形都是全等的.
由此得到另一个识别全等三角形的简便方法:
如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等.简写成:“角角边”或简记为(A.S.A.)。
6、问题3:你能说说ASA与AAS这两种全等识别法间的关系吗?
(AAS识别法可由ASA识别法推导出来,如上图中,因为,,由于,,所以,于是△ABC与△DEF具备ASA全等。)
7、范例
如图,,,试说明△ABC≌△DCB
解:已知,
又BC是公共边,由(ASA)全等识别法,
可知△ABC≌△DCB
三、巩固练习 P70练习 1、2
四、小结 用采访的形式访问一些同学,本节学到什么知识,对这些知识有什么体会,对本节的知识存在着哪些疑问。
五、作业 习题3、4、5
展开阅读全文