1、一、课题 2.1数怎么不够用了(1)二、教学目标1使学生了解正数与负数是从实际需要中产生的;2使学生理解正数与负数的概念,并会判断一个数是正数还是负数;3初步会用正负数表示具有相反意义的量;4在负数概念的形成过程中,培养学生的观察、归纳与概括的能力三、教学重点和难点重点难点负数的意义负数的意义四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)、从学生原有的认知结构提出问题大家知道,数学与数是分不开的,它是一门研究数的学问现在我们一起来回忆一下,小学里已经学过哪些类型的数?学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是
2、由于实际需要而产生的为了表示一个人、两只手、,我们用到整数1,2,4.87、为了表示“没有人”、“没有羊”、,我们要用到0但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示(二)、师生共同研究形成正负数概念某市某一天的最高温度是零上5,最低温度是零下5要表示这两个温度,如果只用小学学过的数,都记作5,就不能把它们区别清楚它们是具有相反意义的两个量现实生活中,像这样的相反意义的量还有很多例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的和“运出”,其意义是相反的同学们能举例子吗?学生回答后,教师提出:怎样区别相反意义的量才好呢?
3、待学生思考后,请学生回答、评议、补充教师小结:同学们成了发明家甲同学说,用不同颜色来区分,比如,红色5表示零下5,黑色5表示零上5;乙同学说,在数字前面加不同符号来区分,比如,5表示零上5,5表示零下5其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”如今这种方法在记账的时候还使用所谓“赤字”,就是这样来的现在,数学中采用符号来区分,规定零上5记作+5(读作正5)或5,把零下5记作-5(读作负5)这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了让学生用同样的方法表示出前面例子中具有相反意义的量:高于海平面8848米,记作+8848
4、米;低于海平面155米,记作-155米;教师讲解:什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号三、运用举例 变式练习例 所有的正数组成正数集合,所有的负数组成负数集合把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分然后,指出不仅可以用圈表示集合,也可以用大括号表示集合课堂练
5、习任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:正数集合: ,负数集合: (四)、小结由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数正数是大于0的数,负数就是在正数前面加上“-”号的数0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0七、练习设计1北京一月份的日平均气温大约是零下3,用负数表示这个温度2在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖,图中标着-392,这表明死海的湖面与海平面相比的高度是怎样的?3在下列各数中,哪些是正数?哪些是负数?-3.6,-4,9651,-0.14如果-50元表示支出50元,那么+
6、200元表示什么?5河道中的水位比正常水位低0.2米记作-0.2米,那么比正常水位高0.1米记作什么?6如果自行车车条的长度比标准长度长2毫米记作+2毫米,那么比标准长度短3毫米记作什么?7一物体可以左右移动,设向右为正,问:(1)向左移动12米应记作什么?(2)“记作8米”表明什么?八、板书设计 21数怎么不够用了(1)(一)知识回顾 (四)例题解析 (六)课堂小结(二)观察发现 例1、例2(三)解方程 (五)课堂练习 练习设计九、教学后记这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的从内容上讲,负数比非负数要抽象、难理解因此学生通过这节课只能对负数概念有初步的理解,使学
7、生掌握正负数的记法和它的描述性定义,要求不能过高对有理数的深入理解将在以后的学习中逐步加强在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则,教师在课堂上要起好主导作用,并让学生有充分的活动机会,使得课堂气氛有新鲜感所以这节课采取了在教师的启发引导下,师生共同探究解决的途径,以谈话法为主同时,教师的语言要尽量儿童化一、课题 2.1数怎么不够用了(2)二、教学目标1使学生理解有理数的意义,并能将给出的有理数进行分类;2培养学生树立分类讨论的思想三、教学重点和难点重点难点有理数包括哪些数有理数的分类及其分类的标准四、教学手段现代课堂教学手段五、教学方法启发式教
8、学六、教学过程(一)、从学生原有的认知结构提出问题1什么是正、负数?2如何用正、负数表示具有相反意义的量?数0表示量的意义是什么?举例说明3任何一个正数都比0大吗?任何一个负数都比0小吗?4什么是整数?什么是分数?根据学生的回答引出新课(二)、讲授新课1给出新的整数、分数概念引进负数后,数的范围扩大了过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数,即2给出有理数概念整数和分数统称为有理数,即有理数是英语“Rational number”的译名,更确切的译名应译作“比3有理数
9、的分类为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数有理数还有没有其他的分类方法?待学生思考后,请学生回答、评议、补充教师小结:按有理数的符号分为三类:正有理数、负有理数和零,简称正数、负数和零,即并指出,在有理数范围内,正数和零统称为非负数并向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类(三)、运用举例 变式练习例1 将下列数按上述两种标准分类:例2 下列各数是正数还是负数,是整数还是分数:课堂练习25,-100按两种标准分类2下列各数是正数还是负数,是整数还是分数?(四)、小结
10、教师引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?七、练习设计1把下列各数填在相应的括号里(将各数用逗号分开):正整数集合: ;负整数集合: ;正分数集合: ;负分数集合: 2填空题:的数是_,在分数集合里的数是_;(2)整数和分数合起来叫做_,正分数和负分数合起来叫做_3选择题(1)-100不是 A有理数 B自然数 C整数 D负有理数(2)在以下说法中,正确的是 A非负有理数就是正有理数B零表示没有,不是有理数C正整数和负整数统称为整数D整数和分数统称为有理数八、板书设计 21数怎么不够用了(2)(一)知识回顾 (三)例题解析 (五)课堂小结(二)观
11、察发现 例1、例2 (四)课堂练习 练习设计九、教学后记在传授知识的同时,一定要重视数学基本思想方法的教学关于这一点,布鲁纳有过精彩的论述他指出,掌握数学思想和方法可以使数学更容易理解和更容易记忆,更重要的是领会数学思想和方法是通向迁移大道的“光明之路”,如果把数学思想和方法学好了,在数学思想和方法的指导下运用数学方法驾驭数学知识,就能培养学生的数学能力不但使数学学习变得容易,而且会使得别的学科容易学习显然,按照布鲁纳的观点,数学教学就不能就知识论知识,而是要使学生掌握数学最根本的东西,用数学思想和方法统摄具体知识,具体解决问题的方法,逐步形成和发展数学能力为了使学生掌握必要的数学思想和方法,需要在教学中结合内容逐步渗透,而不能脱离内容形式地传授本课中,我们有意识地突出“分类讨论”这一数学思想方法,并在教学中注意渗透两点:1分类的标准不同,分类的结果也不相同;2分类的结果应是无遗漏、无重复,即每一个数必须属于某一类,又不能同时属于不同的两类