1、1.5.1 乘方教学目标:知识技能:在现实背景中,理解有理数乘方的意义.能进行有理数的乘方运算,并会用计算器进行乘方运算.掌握幂的符号法则.数学思考:培养观察.类比.归纳.知识迁移的能力.通过乘方运算,培养运算能力;解决问题:了解乘方的意义并能正确的读.写;掌握幂的性质并能进行乘方的运算.情感态度:在独立思考的基础上,积极参与对数学问题的讨论,能从交流中获益教学重点:有理数乘方的意义,幂,底数,指数的概念及其表示.理解有理数乘法运算与乘方间的联系,处理好负数的乘方运算. 教学难点:有理数乘方的意义的理解与运用教学过程设计活动一.创设情境,引入新课. 1.教师展示细胞分裂的示意图,引导学生分析某
2、种细胞的分裂过程,学生则回答教师提出来的问题,并说明如何得出结果.2.结合学生熟悉的边长为a的正方形的面积是aa,棱长为a的正方体的体积是aaa及它们的简单记法,告诉学生几个相同因数a相乘的运算就是这堂课所要学习的内容.教学说明:在实际背景中创设情境激发学生的学习兴趣.通过计算正方体面积和正方体体积的实例,引出课题.活动二.合作交流,得出结论. 1.分小组学习课本41页,要求能结合课本中的示意图,用自己的语言表达下列几个概念的意义及相互关系.底数是相同的因数,可以是任何有理数,指数是相同因数的个数,在现阶段中是正整数,而幂则是乘方的结果.2.定义:n个相同因数a相乘,即aaa(个),记作an,
3、读作a的n次方. 求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂,在an中,a叫做底数,n叫做指数.读作a的n次方或a的n次幂.3(1)补充例题:把下列各式写成乘方运算的形式,并指出底数,指数各是多少?(2.3)(2.3)(2.3)(2.3). ()()()().xxx.x(2010个x的积).(2)课本例题,教师指导学生阅读分析例题,并规范书写解题过程.3.此例可由学生口述,教师板述完成.4.小组讨论: 的区别?教学说明:教师要提醒学生注意,相同的分数或相同的负数相乘时,要加括号,例如(2)(2)(2)(2)记作(2)4.通过补充例题和小组讨论:的区别的学习,对有理数的乘方有更进一步的
4、理解.活动三.应用新知,课堂练习. 1.做一做:课本第42页练习第1题.2.用计算器算,以及课本42页练习第2题.3.小组讨论:通过上面练习,你能发现负数的幂的正负有什么规律?正数呢?0呢?学生归纳总结.4.总结规律:负数的奇数次幂是负数,负数的偶次幂是正数;正数的任何次幂是正数;0的任何次幂是0.教学说明:把问题再次交给学生,充分发挥学生的主观能动性,鼓励学生尽可能地发现规律.活动四.知识梳理,课堂小结. 1.由学生小结本堂课所学的内容.2.总结五种已学的运算及其结果.运算加减乘除乘方运算结果和差积商幂活动五.知识反馈,作业布置.1.课本47页第1,2题.2.课外拓展(1)用乘方的意义计算下列各式:; ; ; .(2)观察下列各等式:1=; 1+3= ; 1+3+5=;1+3+5+7=通过上述观察,你能猜想出反映这种规律的一般结论吗?你能运用上述规律求1+3+5+7+.+2011的值吗?