1、第四章 4.2直线、射线、线段知识点1:直线1.定义:将线段向两个方向无限延长就形成了直线,也就是说直线是直的,无粗细之分,可向两方无限延伸.2.直线的表示方法:第一种:一条直线可以用一个小写字母表示,如图中的直线可记作直线a.第二种:一条直线也可以用这条直线上的两个点来表示,如图中的直线可记作直线AB或直线BA.3.点与直线的位置关系:(1)点在直线上,或者说直线经过这个点.如图,点O在直线l上,也可以说直线l经过点O.(2)点在直线外,或者说直线不经过这个点.如图,点P不在直线l上,也可以说直线l不经过点P.4.相交:当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它
2、们的交点.知识点2:直线的基本事实1.用一个钉子把一根细木条钉在墙上,木条可以转动.用两个钉子把木条钉在墙上,木条就被固定了.这说明经过一点有无数条直线,经过两点有且只有一条直线.2.经过两点有一条直线,并且只有一条直线.知识点3:线段1.一根拉紧的线、一根竹竿,给我们以线段的形象.直线上两点之间的部分叫做线段,这两个点叫做线段的端点.像三角形、长方形的边,正方体的棱等都是线段.2.线段有两种表示方法:一条线段可以用它的两个端点来表示,如图,以A、B为端点的线段,可记作“线段AB”或“线段BA”;一条线段可以用一个小写字母来表示,如图,线段AB也可记作“线段a”.知识点4:线段的延长线利用直尺
3、可以把线段向任意一方延长,线段向一方延长的部分叫做线段的延长线,如左下图,从B点开始把线段AB延长,常说成“延长线段AB”或“反向延长线段BA”;对于右下图,从A点把线段AB进行延长,常说成是“延长线段BA”或“反向延长线段AB”.这里所说的线段AB和线段BA的延长线都是指图中的虚线部分,不包含线段AB.线段的延长线一般都画成虚线.拓展延伸:延长线具有方向性:线段的延长线是讲方向的,作延长线时要特别注意表示线段的字母顺序,以便确定延长的方向.“线段BA”与“线段AB”是同一条线段,但“延长线段AB”与“延长线段BA”不一样.知识点5:射线1.定义:将线段向一个方向无限延长就形成了射线.射线只有
4、一个端点.也就是说,射线也是一条“直的线”.与有头有尾的线段不同,射线是有头无尾,它的“头”就是端点.2.表示法:两个大写字母:一条射线可以用它的端点和射线上的另一点来表示,如图中的射线,点O是端点,点A是射线上异于端点的另一点,那么这条射线可以记作射线OA.其中,表示端点的字母必须写在另一个字母的前面,而且在两个字母的前面要写上“射线”两字.一个小写字母:一条射线也可以用一个小写字母表示,如图中的射线OA,也可记作射线l.3.延长线:射线没有延长线,只有反向延长线.知识点6:线段的大小比较1.叠合法:当两条线段能够放在一起而又不要求知道相差的具体数值时,可用此法.比较线段AB与CD的大小,将
5、线段AB放到线段CD上,使点A和点C重合,点B和点D在重合点的同侧.(1)如果点B和点D重合,如图,就说线段AB与线段CD相等,记作AB=CD.(2)如果点B在线段CD上,如图,就说线段AB小于线段CD,记作ABCD.2.度量法:当两条线段的长短差别不太明显,而又不便放在一起比较,或需要求出相差的具体数值时,可用此法.如图,对于线段AB和CD,我们可以用刻度尺分别量出它们的长度,数值大的线段较长,数值小的线段较短,数值相等时两线段一样长.经过度量,线段AB比线段CD长,而用估测法就不易得到这一正确结果.知识点7:中点1.定义:把线段分成相等的两条线段的点,叫做线段的中点.如图,点C是线段AB的
6、中点,则AC=CB.2.中点常用结论:若C为线段AB的中点,则AC=BC;AC=AB或BC=AB;AB=2AC或AB=2BC.3.中点定义的运用:(1)因为AC=CB且C在线段AB上(已知),所以点C是线段AB的中点(中点的定义).(2)因为点C是线段AB的中点(已知),所以AC=BC或AC=AB或BC=AB或AB=2AC或AB=2BC(中点的定义).4.三等分点、四等分点类似中点定义,把一条线段分成三条相等的线段的点叫做线段的三等分点,如左下图,M、N是线段AB的三等分点,则有AM=MN=NB=AB.把一条线段分成四条相等的线段的点叫做线段的四等分点,如右下图,M、N、P是线段AB的四等分点
7、,则有AM=MN=NP=PB=AB.知识点8:线段的性质1.线段的性质:两点的所有连线中,线段最短.2.两点之间的距离:连接两点间的线段的长度,叫做这两点的距离.两点间的距离是一个数量.而线段本身是图形,因此不能把A、B两点间的距离说成是线段AB.另外,连接两点是指画出以这两点为端点的线段.考点1:线段、射线、直线的计数【例1】如图,图中有直线条,射线条,线段条.答案:2;11;6点拨:图中有直线BC、AC,共两条;射线向一方延伸,以A为端点的射线有3条,以B为端点的射线有3条,以C为端点的射线有4条,以D为端点的射线有1条,共11条;线段有两个端点,图中共有线段6条.考点2:线段的计算【例2
8、】线段AB上有两点P、Q,点P将AB分成两部分,APPB=23;点Q将AB也分成两部分,AQQB=41;且PQ=3 cm.求AP、QB的长.解:画出图形,如图.设AP=2x cm,则PB=3x cm,AB=5x cm.因为AQQB=41,所以AQ=4x cm,QB=x cm.所以PQ=PB-QB=2x cm.因为PQ=3 cm,所以2x=3.所以x=1.5.所以AP=3 cm,QB=1.5 cm.点拨:(1)题目没有提供图形,我们首先应该考虑根据题意画出图形;(2)当题目出现线段长的比的时候,我们常考虑设未知数,利用方程思想解决.考点3:与中点有关的计算【例3】如图,AB=16 cm,C是AB
9、上任意一点,D是AC的中点,E是BC的中点,求线段DE的长.解:因为D为AC的中点(已知),所以DC=AC(中点的定义).因为E是BC的中点(已知),所以CE=BC(中点的定义).因为DE=DC+CE,所以DE=AC+BC=(AC+BC)=AB.因为AB=16cm,所以DE=8 cm.点拨:根据线段中点的定义,可得出DC=AC,CE=BC,而DE=DC+CE,所以DE=AC+BC=(AC+BC)=AB,可求出DE的长.把某些线段长的和看成一个整体是常见的数学解题思想,利用整体思想考虑问题,这样不仅能解决问题,而且能简化运算.求某条线段的长度,当这条线段的长不易直接求出时,我们常常根据图形的特征
10、,将这条线段的长转化为另外几条线段长的和或差来解决.考点4:最短距离作图问题【例4】如图,平原上有A、B、C、D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其他因素,请你画图确定蓄水池H点的位置,使它与四个村庄的距离之和最小.解:如图,连接AC、BD交于点H,H点即为所求的点.点拨:要求点H与四个村庄的距离之和最小,即要求HA+HB+HC+HD最小,要使HA+HC最小,则H点必须在线段AC上;要使HB+HD最小,则H点必须在线段BD上,所以H点应该为AC与BD的交点.考点5:应用问题【例5】往返于梅州与广州的某列车,运行途中停靠的车站依次是:梅州兴宁华城河源惠州东莞广州,试用所学知识说明要为该列车制作的火车票有几种.解:可将这七个站看成七个点,如果将每两点之间都连一条线段,则可以得到条线段,每两个站间需要制作两种车票,所以一共需要制作42种不同的车票.点拨:本题易只考虑单程车票,没考虑双程车票.数学知识的实际应用需要考虑实际情况.