1、单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,#,重积分,第二节 二重积分的计算方法,第二节 二重积分的计算方法,一,.,在直角坐标系中的计算方法,在直角坐标系中,用平行于坐标轴的直线将积分区域,D,分成,n,份小矩形,可知,:,利用几何意义,-,曲顶柱体的体积 研究其计算方法,:,将曲顶柱体看作已知平行截面面积的立体,利用定积分计算,.,化成两次定积分,1.,设,X,型域,a,b,D,先对,y,后对,x,的二次积分,在,D,内任取一点,x,作平行于,yoz,面,的截面,.,曲边梯形,A,(,x,),a,b,x,x,y,z,2.,设,Y,型域,同理可得,:
2、,先对,x,后对,y,的二次积分,注,:(1).,如果,D,既是,X,型域又是,Y,型域,则,c,d,D,(2).,如果,D,既不是,X,型域又不是,Y,型域,则用平行于坐标轴的,直线将,D,分成若干子域,利用积分的可加性进行计算,.,选择积分域和积分次序是计算的关键,例如,:,分块越少越好,积分要易于计算,例,1.,求,,其中,解一,:,-1,1,2,解二,:,例,2,计算,由 围成,.,解一,:,X,型域,解二,:,Y,型域,1,2,y,=,x,例,3,计算,由 围成,.,-1,2,解一,:,Y,型域,解二,:,如果选择,X,型域,需要将,D,分成两部分,显然复杂,.,分块越少越好,例,4
3、,计算,由 围成,.,如果先对,y,积分,无法进行,因此先对,x,积分,积分要易于计算,(1,1),例,6.,交换积分次序,:,1,-2,2,0,1,二,.,在极坐标系中的计算方法,在极坐标系中,设,D,的边界与过极点的射线相交不多于两点,化成两次定积分,用过极点的射线和以极点为圆心的圆周将,D,分成若干子域,如图可知,:,基本类型,:,D,(2).,如果,D,是曲边扇形,:,(3).,如果,D,包含极点,:,注,:(1).,只研究先对 后对 的积分次序,;,例,6,计算,例,7,计算,此题若采用直角坐标系方法无法积分,注意,:,下列情形适合用极坐标计算,:,(1).,积分区域适于极坐标表示,例如,:,圆,圆环,;,(2).,被积函数形如,;,(3).,用直角坐标系计算不出时,.,例,8.,化为极坐标形式,:,2R,0,难题解析,x,O,y,1,-1,1,