收藏 分销(赏)

函数的最大值和最小值.doc

上传人:仙人****88 文档编号:7186348 上传时间:2024-12-27 格式:DOC 页数:5 大小:50KB
下载 相关 举报
函数的最大值和最小值.doc_第1页
第1页 / 共5页
函数的最大值和最小值.doc_第2页
第2页 / 共5页
函数的最大值和最小值.doc_第3页
第3页 / 共5页
函数的最大值和最小值.doc_第4页
第4页 / 共5页
函数的最大值和最小值.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 营销问题中的数学应用湖北省保康县职教中心 姚家红【教学目标】根据本节教材特点,结合学生已有的认知水平,制定本节如下的三维教学目标:1知识和技能目标(1)了解函数在营销问题中的应用。(2)能根据实际问题的题设情景,运用所学的函数知识和方法正确建立函数解析式。(3)掌握数学建模的基本步骤。2过程和方法目标(1)在学习过程中,观察、归纳、表述、交流、合作,最终形成认识(2)培养学生的数学能力,能够自己发现问题,分析问题并最终解决问题3情感和价值目标(1)使学生意识到数学知识在生活中的重要性,以激发学生的学习积极性和兴趣。(2)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神【教学重点、难

2、点】1教学重点 基于以上对本节教材特点和教学目标的分析,将本节课的教学重点确定为:(1)培养学生的探索精神,积累自主学习的经验;(2)会利用函数知识解决实际问题。2教学难点如何从实际问题中抽象出数学模型。3教学关键本节课突破难点的关键是:通过合作探究的方式,让学生在运动变化的过程中通过观察、比较,发现方法【教法选择】根据新课标的教学理念,教学中要培养学生合作共事的团队精神,这节课还采用了“合作、讨论法”,让学生共同探讨、合作学习、取长补短、形成共识【学法指导】教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作

3、用【教学过程】本节课的教学,大致按照“创设情境,铺垫导入合作学习,探索新知指导应用,鼓励创新归纳小结,反馈建构”四个环节进行组织教学环节教 学 内 容设 计 意 图一、创 设 情 境,铺 垫 导 入1问题情境:在日常生活、生产和科研中,常常会遇到求什么条件下可以使成本最低、产量最大、效益最高等问题,比如经营者如何确定售价的问题。(1)大家认为经营者的经营目的是什么?(2)那为了达到这个目的,你所发现的他们的经营方法有哪些呢?(3)你认为哪种最合理?2引出课题:为什么这种方法最合理呢?这节课我们就来探讨一下:营销问题中的数学应用。 以实例引入新课,有利于学生感受到数学来源于现实生活,培养学生用数

4、学的意识, 教学环节教 学 内 容设 计 意 图二、合 作 学 习,探 索 新 知问题1:某超市将进价为8元的商品按每件20元售出,每天可销售200件,通过市场调查发现:若每件售价涨1元,其销售量就减少10件。超市想获取最大利润,请同学们帮助超市确定一下售价,并预算出这个最大利润。变式:将进货单价为80元的商品按90元一个出售时,能卖出400个,根据经验,该商品每个涨(降)1元,其销量就减少(增加)20个,为获得最大利润,售价应定为多少元?为新知的发现奠定基础后,提出教学目标,让学生带着问题走进课堂,既明确了学习目的,又激发起学生的求知热情学生在合作交流的探究氛围中思考、质疑、倾听、表述,体验

5、到成功的喜悦,学会学习、学会合作在整个新知形成过程中,教师的身份始终是启发者、鼓励者和指导者,以提高学生抽象概括、分析归纳及语言表述等基本的数学思维能力 教学环节教 学 内 容设 计 意 图三、指 导 应 用,鼓 励 创 新解决例1的方法并不唯一,还可以通过换元转化为学生熟知的二次函数问题;而这里利用新学的导数法求解,这种方法更具一般性,是本节课学习的重点“问起于疑,疑源于思”,数学最积极的成分是问题,提出问题并解决问题是数学教学的灵魂思考题的目的是优化导数法求最大、最小值的解题过程,培养学生的探究意识及创新精神,提高学生分析和解决问题的能力 对例题1用简化后的方法求解,便于学生将它与第一种解

6、法形成对照,使得问题的解决更简单明快,更易于操作,更容易被学生所接受 课堂练习的目的在于及时巩固重点内容,使学生在课堂上就能掌握同时强调规范的书写和准确的运算,培养学生严谨认真的数学学习习惯对学生完成练习情况进行评价,使所有学生都体验到成功或得到鼓励,并据此调控教学教学环节教 学 内 容设 计 意 图三、指 导 应 用,鼓 励 创 新例2如图,有一长80cm,宽60cm的矩形不锈钢薄板,用此薄板折成一个长方体无盖容器,要分别过矩形四个顶点处各挖去一个全等的小正方形,按加工要求,长方体的高不小于10cm不大于20cm,设长方体的高为xcm,体积为Vcm3问x为多大时,V最大?并求这个最大值分析:

7、建立V与x的函数的关系后,问题相当于求x为何值时,V最大,可用本节课学习的导数法加以解决例题2的解决与本课的引例前后呼应,继续巩固用导数法求闭区间上连续函数的最值,同时也让学生体会到现实生活中蕴含着大量的数学信息,培养他们用数学的意识和能力四、归 纳 小 结 ,反 思 建 构课堂小结:1在闭区间a,b上连续的函数f(x)在 a,b上必有最大值与最小值;2求闭区间上连续函数的最值的方法与步骤;3利用导数求函数最值的关键是对可导函数使导数为零的点的判定.作业布置:P134 1选做题:已知抛物线 y =4 x2 的顶点为O,点A(5,0),倾斜角为 的直线与线段OA相交,且不过O、A两点,l 交抛物

8、线于M、N两点,求使AMN面积最大时的直线 l 的方程.通过课堂小结,深化对知识理解,完善认识结构,领悟思想方法,强化情感体验,提高认识能力课外作业分必做题与选做题,因材施教、及时反馈,让不同的学生在数学上得到不同的发展同时有利于教师发现教学中的不足,及时反馈调节【教学设计说明】本节课旨在加强学生运用导数的基本思想去分析和解决问题的意识和能力,即利用导数知识求闭区间上可导的连续函数的最值,这是导数作为数学工具的一个具体体现,整堂课对闭区间上的连续函数的最大值和最小值以“是否存在?存在于哪里?怎么求?”为线索展开1由于学生对极限和导数的知识学习还谈不上深入熟练,因此教学中从直观性和新旧知识的矛盾

9、冲突中激发学生的探究热情,充分利用学生已有的知识体验和生活经验,遵循学生认知的心理规律,努力实现课程改革中以“学生的发展为本”的基本理念2关于教学过程,对于本节课的重点:求闭区间上连续,开区间上可导的函数的最值的方法和一般步骤,必须让学生在课堂上就能掌握对于难点:求最值问题的优化方法及相关问题,层层递进逐步提出,让学生带着问题走进课堂,师生共同探究解决,知识的建构过程充分调动学生的主观能动性3为充分调动学生的学习积极性,让学生能够主动愉快地学习,本节课始终贯彻“教师为主导、学生为主体、探究为主线、思维为核心”的数学教学思想,引导学生主动参与到课堂教学全过程中4在教学手段上,制作多媒体课件辅助教学,使得数学知识让学生更易于理解和接受;课堂教学与现代教育技术的有机整合,大大提高了课堂教学效率

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服