1、 数学教案切线的判定和性质 切线的判定和性质(一) 教学目标: 1、使学生深刻理解切线的判定定理,并能初步运用它解决有关问题; 2、通过判定定理和切线判定方法的学习,培育学生观看、分析、归纳问题的力量; 3、通过学生自己实践发觉定理,培育学生学习的主动性和积极性 教学重点:切线的判定定理和切线判定的方法; 教学难点:切线判定定理中所阐述的由位置来判定直线是圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开头时把握不好并极简单无视 教学过程()设计 (一)复习、发觉问题 1直线与圆的三种位置关系 在图中,图(1)、图(2)、图(3)中的直线l和O是什么关系? 、观看、提出问题、
2、分析发觉(教师引导) 图(2)中直线l是O的切线,怎样判定?依据切线的定义可以判定一条直线是不是圆的切线,但有时使用定义判定很不便利我们从另一个侧面去观看,那就是直线和圆的位置怎样时,直线也是圆的切线呢? 如图,直线l到圆心O的距离OA等于圆O的半径,直线l是O的切线这时我们来观看直线l与O的位置 发觉:(1)直线l经过半径OC的外端点C;(2)直线l垂直于半径0C这样我们就得到了从位置上来判定直线是圆的切线的方法切线的判定定理 (二)切线的判定定理: 1、切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线 2、对定理的理解: 引导学生理解:经过半径外端;垂直于这条半径 请学生思索
3、:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不行 图(1)中直线了l经过半径外端,但不与半径垂直;图(2)(3)中直线l与半径垂直,但不经过半径外端 从以上两个反例可以看出,只满意其中一个条件的直线不是圆的切线 (三)切线的判定方法 教师组织学生归纳切线的判定方法有三种: 直线与圆有唯一公共点;直线到圆心的距离等于该圆的半径;切线的判定定理 (四)应用定理,强化训练 例1已知:直线AB经过O上的点C,并且OA=OB,CACB 求证:直线AB是O的切线 分析:欲证AB是O的切线由于AB过圆上点C,若连结OC,则AB过半径OC的外端,只需证明OCOB。 证明:连结0C 0A0B,CACB
4、,” 0C是等腰三角形0AB底边AB上的中线 ABOC 直线AB经过半径0C的外端C,并且垂直于半径0C,所以AB是O的切线 练习1推断以下命题是否正确 (1)经过半径外端的直线是圆的切线 (2)垂直于半径的直线是圆的切线 (3)过直径的外端并且垂直于这条直径的直线是圆的切线 (4)和圆有一个公共点的直线是圆的切线 (5)以等腰三角形的顶点为圆心,底边上的高为半径的圆与底边相切 实行学生抢答的形式进展,并要求说明理由, 练习P106,1、2 目的:使学生初步会应用切线的判定定理,对定理加深理解) (五)小结 1、学问:切线的判定定理着重分析了定理成立的条件,在应用定理时,注意两个条件缺一不行
5、2、方法:判定一条直线是圆的切线的三种方法: (1)依据切线定义判定即与圆有唯一公共点的直线是圆的切线。 (2)依据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线 (3)依据切线的判定定理来判定 其中(2)和(3)本质一样,只是表达形式不同解题时,敏捷选用其中之一 3、力量:初步会应用切线的判定定理 (六)作业P115中2、4、5;P117中B组1 切线的判定和性质(二) 教学目标: 1、使学生理解切线的性质定理及推论; 2、通过对圆的切线位置关系的观看,培育学生能从几何图形的直观位置归纳出几何性质的力量; 教学重点:切线的性质定理和推论1、推论2 教学难点:利用“反证法”
6、来证明切线的性质定理 教学设计: (一)根本性质 1、观看:(组织学生,使学生从感性熟悉到理性熟悉) 2、归纳:(引导学生完成) (1)切线和圆有唯一公共点;(切线的定义) (2)切线和圆心的距离等于圆的半径; 猜测:圆的切线垂直于经过切点的半径 引导学生应用“反证法”证明分三步: (1)假设切线AT不垂直于过切点的半径OA, (2)同时作一条AT的垂线OM通过证明得到冲突,OMOA这条半径则有直线和圆的位置关系中的数量关系,得AT和O相交与题设相冲突 (3)成认所要的结论ATAO 切线的性质定理:圆的切线垂直于经过切点的半径 指出:定理中题设和结论中涉及到的三个要点:切线、切点、垂直 引导学
7、生发觉: 推论1:经过圆心且垂直于切线的直线必经过切点 推论2:经过切点且垂于切线的直线必经过圆心 引导学生分析性质定理及两个推论的条件和结论问的关系,总结出如下结论: 假如一条直线具备以下三个条件中的任意两个,就可推出第三个 (1)垂直于切线; (2)过切点; (3)过圆心 (二)归纳切线的性质 (1)切线和圆有唯一公共点;(切线的定义) (2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题) (3)切线垂直于过切点的半径;(切线的性质定理) (4)经过圆心垂直于切线的直线必过切点;(推论1) (5)经过切点垂直于切线的直线必过圆心(推论2) (三)应用举例,强化训练 例1、如图,A
8、B为O的直径,C为O上一点,AD和过C点的切线相互垂直,垂足为D 求证:AC平分DAB 引导学生分析:条件CD是O的切线,可得什么结论;由ADCD,又可得什么 证明:连结OC AC平分DAB 例2、求证:假如圆的两条切线相互平行,则连结两个切点的线段是直径。 已知:AB、CD是O的两条切线,E、F为切点,且ABCD 求证:连结E、F的线段是直径。 证明:连结EO并延长 AB切O于E,OEAB, ABCD,OECD CD是O切线,F为切点,OE必过切点F EF为O直径 强化训练:P109,1 3、求证:经过直径两端点的切线相互平行。 已知:AB为O直径,MN、CD为O切线,切点为A、B 求证:M
9、NCD 证明:MN切O于A,AB为O直径 MNAB CD切O于B,B为半径外端 CDAB, MNCD (四)小结 1、学问:切线的性质: (1)切线和圆有唯一公共点;(切线的定义) (2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题) (3)切线垂直于过切点的半径;(切线的性质定理) (4)经过圆心垂直于切线的直线必过切点;(推论1) (5)经过切点垂直于切线的直线必过圆心(推论2) 2、力量和方法: 但凡题目中给出切线的切点,往往“连结”过切点的半径从而运用切线的性质定理,产生垂直的位置关系 (五)作业教材P109练习2;教材P116中7 切线的判定和性质(三) 教学目标: 1、使
10、学生学能敏捷运用切线的判定方法和切线的性质证明问题; 2、把握运用切线的性质和切线的判定的有关问题中帮助线引法的根本规律; 3、通过对切线的综合型例题分析和论证,激发学生的思维 教学重点:对切线的判定方法及其性质的精确、熟炼、敏捷地运用 教学难点:综合型例题分析和论证的思维过程 教学设计: (一)复习与归纳 1、切线的判定 切线的判定方法有三种: 直线与圆有唯一公共点; 直线到圆心的距离等于该圆的半径; 切线的判定定理即经过半径外端并且垂直于这条半径的直线是圆的切线 2、切线的性质: (1)切线和圆有唯一公共点;(切线的定义) (2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题) (
11、3)切线垂直于过切点的半径;(切线的性质定理) (4)经过圆心垂直于切线的直线必过切点;(推论1) (5)经过切点垂直于切线的直线必过圆心(推论2) (二)敏捷应用 例1(P108例3)、已知AB是O的直径,BC是O的切线,切点为B,OC平行于弦AD求证:DC是O的切线 证明:连结OD OA=OD,1=2, ADOC,1=3、2=4 3=4 在OBC和ODC中, OB=OD,3=4,OC=OC, OBCODC,OBC=ODC BC是O的切线,OBC=90,ODC=90 DC是O的切线 例2(P110例4)、如图,在以O为圆心的两个同心圆中,大圆的弦AB和CD相等,且AB与小圆相切于点E,求证:
12、CD与小圆相切 证明:连结OE,过O作OFCD,垂足为F AB与小圆O切于点点E,OEAB 又AB=CD, OF=OE,又OFCD, CD与小圆O相切 学生归纳:(1)证明切线的两个常见方法(连半径证垂直;作垂直证半径); (2)“连结”过切点的半径,产生垂直的位置关系 例3、已知:AB是半O直径,CDAB于D,EC是切线,E为切点 求证:CE=CF 证明:连结OE BE=BO3=B CE切O于E OECE2+3=90 CDAB4+B=90 2=4 1=41=2 CE=CF 以上例题让学生自主分析、论证,教师指导书写标准,观看学生推理的严密性和学生共同存在的问题,准时解决 稳固练习:P111练
13、习1、2 (三)小结: 1、学问:(指导学生归纳)切线的判定方法和切线的性质 2、力量:敏捷运用切线的判定方法和切线的性质证明问题;作帮助线的力量和技巧 (四)作业:教材P115,1(1)、2、3 探究活动 问题:(北京西城区,2023)已知:AB为O的直径,P为AB延长线上的一个动点,过点P作O的切线,设切点为C (1)当点P在AB延长线上的位置如图1所示时,连结AC,作APC的平分线,交AC于点D,请你测量出CDP的度数; (2)当点P在AB延长线上的位置如图2和图3所示时,连结AC,请你分别在这两个图中用尺规作APC的平分线(不写做法,保存作固痕迹),设此角平分线交AC于点D,然后在这两个图中分别测量出CDP的度数; 猜测:CDP的度数是否随点P在AB延长线上的位置的变化而变化?请对称的猜测加以证明 解:(1) 测量结果: (2)图2中的测量结果: 图3中的测量结果: 猜测: 证明: 解:(1) 测量结果:CDP=45 (2)图2中的测量结果:CDP=45 图3中的测量结果:CDP=45 猜测:CDP=45,不随点P在AB延长线上的位置的变化而变化 证明:连结OC PC切O于点C, PCOC, 1+CPO=90, PC平分APC, 2=1/2CPO OA=OC A=3 1=A+3, A=1/21 CDP=A+2=1/2(1+CPO)=45 猜测正确