资源描述
切线的判定和性质
课题名称
24.2.2.2切线的判定和性质
课型
新课
授课对象
九(4、7)
任课教师
学情分析
学会用分类的方法解决判定,采用启发、诱导的方法来指导学生“利用判定定理及添加两种不同的辅助线”,引导学生反思、小结数学的思想方法,知识的获取,让学生看到自我的价值,增强学习的乐趣和信心。
教
材
分
析
知识点
切线的判定定理和性质定理
重点
探索切线的判定定理和性质定理,并运用.
难点
探索切线的判定方法
易混
(错)点
切线的判定定理和性质定理
考点
切线的判定定理和性质定理
学科特性
教学目标
知识与技能
1.理解切线的判定定理和性质定理,并能灵活运用.
2.会过圆上一点画圆的切线.
过程与方法
以圆心到直线的距离和圆的半径之间的数量关系为依据,探究切线的判定定理和性质定理,领会知识的延续性,层次性.
情感态度与价值观
让学生感受到实际生活中存在的相切关系,有利于学生把实际的问题抽象成数学模型。
教学方法
与手段
自主—探究—合作
主要参考资料
九年级教学参考资料和创优教案
自信课堂教学进程
一、激趣导入 生发自信
通过上节课的学习,我们知道,直线和圆的位置关系有三种:相离、相切、相交.而相切最特殊,这节课我们专门来研究切线.
当你在下雨天快速转动雨伞(圆)时雨水飞出问题:让你感受到直线与圆的哪种位置关?
二、自主合作 彰显自信
探究(一):
(一)切线的判定定理
1.推导定理:根据“直线和⊙O相切d=r”,如图所示,因为d=r直线和⊙O相切,这里的d是圆心O到直线的距离,即垂直,并由d=r就可得到经过半径r的外端,即半径OA的端点A,可得切线的判定定理:
经过半径的外端并且垂直于这条半径的直线是圆的切线.
分析:垂直于一条半径的直线有几条?
经过半径的外端可以做出半径的几条垂线?
去掉定理中的“经过半径的外端”会怎样?去掉“垂直于半径”呢?
思考1:根据上面的判定定理,要证明一条直线是⊙O的切线,需要满足什么条件?
总结:①这条直线与⊙O有公共点;②过这点的半径垂直于这条直线.
思考2:现在可以用几种方法证明一条直线是圆的切线?
①和圆只有一个公共点的直线是圆的切线.
②到圆心的距离等于半径的直线是圆的切线.③上面的判定定理.
思考3:已知一个圆和圆上的一点,如何过这个点画出圆的切线?
探究(二):
(二)切线的性质定理
1.阅读课本96页思考
2.如图,CD是切线,A是切点,连结AO与⊙O交于B,那么AB是对称轴,所以沿AB对折图形时,AC与AD重合,因此,∠BAC=∠BAD=90°.因此,可得切线的性质定理:
圆的切线垂直于过切点的半径.
3.切线的性质归纳:
①切线和圆只有一个公共点.②切线和圆心的距离等于圆的半径.
③上面的性质定理.④经过圆心且垂直于切线的直线必过切点.
⑤经过切点垂直于切线的直线必过圆心.
三、展示提升 赏识自信
2. 定理应用
①完成课本例1
分析:已知点C是直线AB和圆的公共点,只要证明OC⊥AB即可,所以需要连接OC,作出半径. 知道一条直线经过圆上某一点,则连接这点和圆心,证明该直线与所作半径垂直即可.
②如图,O为∠BAC平分线上一点,OD⊥AB于D,以O为圆心,以OD为半径作⊙O.
求证:⊙O与AC相切.
分析:题中没有给出直线AC与⊙O的公共点,过点O作直线AC的垂线OE,证明垂线段OE等于半径OD即可.不知道直线和圆有无公共点,则过圆心作已知直线的垂线,证明垂线段等于半径,从而证明直线是圆的切线.
.如图,已知Rt△ABC的斜边AB=8cm,AC=4cm.
(1)以点C为圆心作圆,当半径为多长时,直线AB与⊙C相切?为什么?(2)以点C为圆心,分别以2cm和4cm为半径作两个圆,这两个圆与直线AB分别有怎样的位置关系?
分析:(1)根据切线的判定定理可知,要使直线AB与⊙C相切,那么这条半径应垂直于直线AB,并且C点到垂足的距离等于半径,所以只要求出如图所示的CD即可.(2)用d和r的关系进行判定,或借助图形进行判定.
四、拓展延伸 完善自信
如图,AB为⊙O直径,C是⊙O上一点,D在AB的延长线上,∠DCB=∠A.
(1)CD与⊙O相切吗?若相切,请证明,若不相切,请说明理由.
(2)若CD与⊙O相切,且∠D=30°,BD=10,求⊙O的半径.
巩固练习、考点早实践
1、如图,点O在∠APB的平分线上,⊙O与PA相切于点C.
(1)求证:直线PB与⊙O相切;
(2)PO的延长线与⊙O交于点E.若⊙O的半径为3,PC=4。求弦CE的长
如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相
垂直,垂足为D,交⊙O于点E.(1)求证:AC平分∠DAB.
(2)连接BC,若CD=4,⊙O的半径是5,求BC的长.
板书设计
课题
切线的判定 定理应用
切线的性质 常见作辅助线方法
课后反思
本节课采用教师为主导、学生为主体、练习为主线的教学策略,教师的作用主要体现在创设合适的问题情境,引导学生在课堂上发挥主观能动性,体现学生的主体地位,练习是学生学习数学知识和掌握数学能力的平台,因此把练习教学当成一节课的主线。
展开阅读全文