1、单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,本资料仅供参考,不能作为科学依据。谢谢。本资料仅供参考,不能作为科学依据。本资料仅供参考,不能作为科学依据。谢谢。本资料仅供参考,不能作为科学依据。,连州市第二中学,高一(5)班,刘 望,1/31,数列定义及简单表示法:,按一定次序排成一列数叫做,数列,。,假如数列,a,n,第,n,项,a,n,与,n,关系能够用一个公式来表示,那么这个公式就叫做这个数列,通项公式,。,复习回顾,数列有哪几个表示方法?,通项公式法、列表法、图象法、递推公式,.,普通写成,a,1,a,2,a,3,a,n,,简记为,a,n,。,
2、2/31,递推公式:,a,1,=,3/31,求前,5,项以及,a,a,3,=2,,,解得:,a,1,=-4,,,求前五项,a,2,=-1,,,a,4,=5,,,a,5,=8,4/31,解得:,a,2,=a,1,+1=3+1=4,,,a,3,=a,2,+1=4+1=5,,,a,4,=a,3,+1=6,,,a,5,=a,4,+1=7,a,1,=3,,,5/31,等差数列及其通项公式,学习目标,1,、了解推导等差数列通项公式方法。,2,、掌握等差数列通项公式。会用通项公式处理一些简单问题。,6/31,(,1,)从,0,开始,将,5,倍数按从大到小次序排列,组成数列为:,0,,,-5,,,-10,,,
3、-15,,,-20,,,-25,,,.,7/31,第,2,4届到第,30,届奥运会举行年份依次为,:,得到数列:,1988,,,1992,,,1996,,,24,届,1988,25,届,1992,26,届,1996,27,届,28,届,29,届,30,届,8/31,姚明刚进,NBA,一周训练罚球个数,:,第一天:,6000,,,第二天:,6500,,,第三天:,7000,,,第四天:,7500,,,第五天:,8000,,,第六天:,8500,,,第七天:,9000.,得到数列:,6000,,,6500,,,7000,,,7500,,,8000,,,8500,,,9000,9/31,耐克运动鞋(
4、女)尺码(鞋底长,单位是,cm,),,,23,,,,,24,,,,,25,,,,,26,10/31,每一项与前一项差都等于同一常数,。,观察归纳,观察:以上数列有什么共同特点?,1,,,2,,,5,,,8,,,11,,,14,有以上特征吗?,2,3,5,8,12,17,6000,,,6500,,,7000,,,7500,,,8000,,,8500,,,9000,1884,,,1988,,,1992,,,1996,,,0,-5,-10,-15,-20,-25,-30,23,,,,,24,,,,,25,,,,,26,从第,2,项起,,11/31,普通地,假如一个数列,a,n,从第,2,项起每一项与
5、它前一项差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列公差。公差通惯用字母,d,表示。,等 差 数 列 定 义,则由定义可知,对等差数列,a,n,,有,a,2,-a,1,=a,3,-a,2,=a,4,-a,3,=,=a,n,-a,n-1,=a,n,+1,-,a,n,=d,0,-5,-10,-15,-20,-25,-30,1884,1988,1992,1996,6000,6500,7000,7500,8000,8500,9000,a,1,称为首项,a,n,-a,n-1,=d,(,n=2,,,3,4,)或,a,n+1,-a,n,=d,(,n=1,,,2,3,),12/31,是,
6、不是,不是,练 习 一,判断以下各组数列中哪些是等差数列,哪些不是?假如是,写出首项,a,1,和公差,d,假如不是,说明理由。,(1)1,3,5,7,,(2)9,6,3,0,-3,(3)3,3,3,3,,(6)15,12,10,8,6,,是,是,a,1,=1,d,=2,a,1,=9,d,=-3,a,1,=3,d,=0,d0,是递增数列,d0,是递减数列,d=0,是常数列,13/31,问题,2,判断下面数列是否为等差数列,怎样判断一个数列是否为等差数列?,(,1,),a,n,=4n-3;,(,n,1,,,nN,*,),总结:判断一个数列是等差数列普通用定义,即:,a,n+1,-,a,n,=d(,
7、n,N*),或,a,n,-,a,n,=d(,n,2,n,N*),你能求首项,a,1,和公差,d,吗?,.,解:由,a,n,=4n-3,得:,a,n,-a,n-1,=,(,4n-3,),-,4,(,n-1,),-3=,4,a,n,是等差数列,a,1,=4,1-3=1,,,d=a,2,-a,1,=(4,2-3)-1=4,等差数列,a,n,首项,a,1,=1,,公差,d=4.,14/31,拓展,:(,2,)数列,a,n,=pn+q,,是不是等差数列,你能证实吗?假如是等差数列求出首项和公差,.,15/31,例,1.,求等差数列,-10,,,-8,,,-6,,,-4,求第项,a,n,=,?,探讨等差数
8、列通项公式:,由递推公式,a,n,-a,n-1,=d,若已知数列,a,n,首项,a,1,和公差,d,,,则,a,n,=,?,求前,5,项以及,a,16/31,通 项 公 式 推 导,a,2,-a,1,=d,a,3,-a,2,=d,a,4,-a,3,=d,所以有:,a,2,=a,1,+d,a,3,=a,2,+d =(a,1,+d)+d =a,1,+2d,a,4,=a,3,+d=,(,a,1,+2d,),+d=a,1,+3d,所以等差数列通项公式是:,a,n,=a,1,+(n-1)d,a,n,=a,1,+(n-1)d,问,a,n,=?,经过观察:,a,2,,,a,3,,,a,4,都能够用,a,1,
9、与,d,表示出来;,a,1,与,d,系数有什么特点?,a,1,、,a,n,、,n,、,d,知三求一,问题,4,:若一个等差数列,a,n,首项是,a,1,公差是,d,求通项,a,n,.,当,n=1,时,上式也成立。,17/31,1.,求等差数列,-10,,,-8,,,-6,,,-4,求第项,a,n,=,?,解:,a,n,是等差数列,且,a,1,=-10,,,d=-8-,(,-10,),=2,n=,a,n,=a,1,+,(,n-1,),d,a=a,1,+,(,-1,),2,=-10+2,=,18/31,例,2,判断,-401,是不是等差数列,5,-9,-13,项,?,假如是,是第几项,假如不是,说
10、明理由。,分析,要想判断 -401是否为这个数列中项,关键是要求出通项公式,看是否存在正整数,n,使得,a,n,=-401,。,解 由题意得:,a,1,=-5,d=-9-(-5)=-4,这个数列通项公式是:,a,n,=-5+(,n,-1)(-4)=-4,n,-1,令-401=-4,n-1,得,n=100,-401,是这个数列第100项。,解 由题意得:,a,1,=-5,d=-9-(-5)=-4,这个数列通项公式是:,a,n,=-5+(,n,-1)(-4)=-4,n,-1,令-4,20=-4n-1,得,n=,-420,不是这个数列项。,-420,是这个数列项吗?为何?,19/31,2.,会利用通
11、项公式来判断所给数是不是数列中项。当判断是第几项项数时还应看求出项数,n,是否为正整数,假如不是正整数,那么它就不是数列中项。,20/31,练习,p40,1,(,1,)已知,a,1,=2,,,d=3,,,n=10,,求,a,n,;,(,2,)已知,a,1,=3,,,a,n,=21,,,d=2,,求,n,;,(,3,)已知,a,1,=12,,,a,6,=27,,求,d,;,(,4,)已知,d=,求,a,1,21/31,练习,p40,1,(,1,)已知,a,1,=2,,,d=3,,,n=10,,求,a,n,;,解:,a,n,=a,1,+,(,n-1,),d,且,a,1,=2,,,d=3,,,n=1
12、0,a,10,=2+,(,10-1,),3,=29,22/31,练习,p40,1,(,2,)已知,a,1,=3,,,a,n,=21,,,d=2,,求,n,;,解:,a,n,=a,1,+,(,n-1,),d,且,a,1,=3,,,a,n,=21,,,d=2,21=3+,(,n-1,),2,=29,解得,n=14,23/31,练习,p40,1,(,3,)已知,a,1,=12,,,a,6,=27,,求,d,;,解:,a,n,=a,1,+,(,n-1,),d,且,a,6,=27,,,a,1,=12,,,n=6,a,6,=27=12+,(,6-1,),d,解得,d=3,24/31,练习,p40,1,(,
13、4,)已知,d=,求,a,1.,。,解:,a,n,=a,1,+,(,n-1,),d,且,a,7,=8,,,d=,,,n=7,a,7,=8=a,1,+(7-1),解得:,a,1,=10,25/31,例,3.,等差数列中,已知,a,5,=10,,,a,12,=31,,求首项,a,1,,公差,d,解:由已知,a,5,=10,,,a,12,=31,建立方程组,a,1,+4d=10,a,1,+11d=31,解得,a,1,=-2,,,d=3,26/31,1.,从该例题中能够看出:,等差数列通项公式其实就是一个关于,a,1,、,a,n,、,d,、,n,(独立量有,3,个)方程,在实际解题过程中常经过列方程或
14、方程组处理问题,27/31,P39,2,题:例,4.,体育场一角看台座位是这么排列:第一排有,15,个座位,从第二排起每一排都比前一排多,2,个座位,.,你能用,a,n,表示第,n,排座位数吗?第,10,排能坐多少个人?,解:由题意可知,体育场座位数成等差数列,记为,a,n,令,a,1,=15,,,d=2,,由等差数列通项公式,a,n,=a,1,+,(,n-1,),d,得:,a,n,=15+,(,n-1,),2,化简得:,a,n,=2n+13,a,10,=33,数学建模思想,28/31,课时小结,经过本课时学习,首先要了解和掌握等差数列定义及数学表示式:,a,n+1,-,a,n,=d(nN*)
15、,;,其次要会推导等差数列通项公式,a,n,=,a,1,+(n-1)d(n N*),本课时重点是通项公式灵活应用,知道,a,n,a,1,d,n,中任意三个,应用方程思想,能够求出另外一个。,29/31,练 习 二,2.,(,1,)求等差数列,3,7,11,第,4,项与第,10,项;,(,2,)判断,102,是不是等差数列,2,,,9,,,16,,,项?假如是,是第几项,假如不是,说明理由。,解:(1)依据题意得:,a,1,=3,d=7-3=4,这个数列通项公式是:,a,n,=,a,1,+(n-1)d=4n-1,a,4,=44-1=15,a,10,=410-1=39.,(2),由题意得:,a,1,=2,d=9-2=7,这个数列通项公式是:,a,n,=2+(n-1)7,=7n-5(n1),令10,2=7n-5,得,n=107/7 N,102,不是这个数列项。,30/31,31/31,