1、*,本资料仅供参考,不能作为科学依据。谢谢。本资料仅供参考,不能作为科学依据。本资料仅供参考,不能作为科学依据。谢谢。本资料仅供参考,不能作为科学依据。,*,本资料仅供参考,不能作为科学依据。谢谢。本资料仅供参考,不能作为科学依据。本资料仅供参考,不能作为科学依据。谢谢。本资料仅供参考,不能作为科学依据。,*,本资料仅供参考,不能作为科学依据。谢谢。本资料仅供参考,不能作为科学依据。本资料仅供参考,不能作为科学依据。谢谢。本资料仅供参考,不能作为科学依据。,*,本资料仅供参考,不能作为科学依据。谢谢。本资料仅供参考,不能作为科学依据。本资料仅供参考,不能作为科学依据。谢谢。本资料仅供参考,不能
2、作为科学依据。,2.2,等差数列,必修,5,1/49,我们经常这么数数,从,0,开始,每隔,5,数一次,能够得到数列:,0,,,5,,,10,,,15,,,20,,,,在澳大利亚悉尼举行奥运会上,女子举重被正式列为比赛项目。,该项目共设置了7个级别,其中较轻4个级别体重组成数列(单位:kg):,48,53,58,63.,水库管理人员为了确保优质鱼类有良好生活环境,用定时放水清库,方法清理水库中杂鱼。假如一个水库水位为,18m,,自然放水天天水位降,低,2.5m,,最低降至,5m,。那么从开始放水算起,到能够进行清理工作那天,,水库天天水位组成数列(单位:,m,):,18,,,15.5,,,13
3、,,,10.5,,,8,,,5.5,.,我国现行储蓄制度要求银行支付存款利息方式为单利,即不把利息加入,本金计算下一期利息。按照单利计算本利和公式是:本利和,=,本金,(1+,利率,存期,),。,比如,按活期存入,10000,元钱,年利率是,0.72%,,那么按照单利,,5,年内各年末本利和,(单位:元)组成一个数列:,10072,,,10144,,,10216,,,10288,,,10360.,引入:,2/49,0,,,5,,,10,,,15,,,20,,,48,,,53,,,58,,,63,.,18,,,15.5,,,13,,,10.5,,,8,,,5.5,.,10072,,,10144,
4、,,10216,,,10288,,,10360.,观察:这四个数列有何共同特点,?,从第二项起,后一项与前一项差是,_,。,从第二项起,后一项与前一项差是,_,。,从第二项起,后一项与前一项差是,_,。,从第二项起,后一项与前一项差是,_,。,5,5,-2.5,72,3/49,新课:,从第,2,项起,每一项与其前一项差,等于,同一个,常数,数列,常数叫做等差数列,公差,,字母,d,表示。,a,n,-a,n-1,=d(,d,是常数,),数列,a,n,为等差数列,a,n,-,a,n-,1,=d,或,a,n,=,a,n,-1,+d,判断、证实一个数列是否为等差数列主要依据,等差数列递推公式,1,、等
5、差数列定义,4/49,练习:判断以下数列中哪些是等差数列,哪些不是?假如是,写出首项,a,1,和公差,d,假如不是,说明理由。,(,1,),1,,,3,,,5,,,7,,,(,2,),9,,,6,,,3,,,0,,,-3,(,3,),-8,,,-6,,,-4,,,-2,,,0,,,(,4,),3,,,3,,,3,,,3,,,a,1,=1,d,=2,a,1,=9,d,=-3,a,1,=-8,d,=2,a,1,=3,d,=0,(,6,),15,,,12,,,10,,,8,,,6,,,思索:,在数列,(1),中,,a,100,=,?,怎样求解呢?,5/49,判断题,(1),数列,a,,,2,a,,,
6、3,a,,,4,a,,,是等差数列,;,(2),数列,a,2,,,2,a,3,,,3,a,4,,,4,a,5,,,是等差数列,;,(3),若,a,n,a,n+1,=3(,n,N,*,),,则,a,n,是公差为,3,等差数列,;,(4),若,a,2,a,1,=,a,3,a,2,则数列,a,n,是等差数列。,6/49,已知数列,a,n,是等差数列,,d,是公差,则:,当,d=,0,时,,a,n,为常数列;,当,d,0,时,,a,n,为递增数列;,当,d,0,时,,a,n,为递减数列;,a,n,-,a,n-1,=,d,(,d,是常数,,,n,2,n,N,*,),2.,等差数列单调性,7/49,3.,
7、等差数列通项公式,方法一:,依据等差数列定义得到,方法一:,不完全归纳法,a,2,=a,1,+d,a,3,=a,1,+2d,a,4,=a,1,+3d,所以有:,8/49,将全部等式相加得,方法二,:,叠加法,方法二:,9/49,等差数列通项公式,【,说明,】,在等差数列,a,n,通项公式中,a,1,、,d,、,a,n,、,n,任知,3,个,可求,其余,1,个,.,4.,等差数列函数特征,10/49,等差数列图象,(,1,)数列:,-2,,,0,,,2,,,4,,,6,,,8,,,10,,,1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,0,11/49,(,2
8、,)数列:,7,,,4,,,1,,,-2,,,1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,0,12/49,(,3,)数列:,4,,,4,,,4,,,4,,,4,,,4,,,4,,,1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,0,13/49,例,1,(,1,)求等差数列,8,,,5,,,2,,,第,20,项;,(,2,)判断,-401,是不是等差数列,5,-9,-13,项,?,假如是,是第几项,假如不是,说明理由。,分析,(,1,),由给出等差数列前三项,先找到首项,a,1,求出公差,d,写出通项公式,就能够求出第,
9、20,项,a,20,.,解:,(1),由题意得:,a,1,=8,d=5-8=-3,这个数列通项公式是:,a,n,=,a,1,+(n-1)d=-3n+11,a,20,=11-320=-49,分析,(,2,),要想判断,-401,是否为这个数列中项,关键是要求出通项公式,看是否存在正整数,n,使得,a,n,=-401,。,(2),由题意得:,a,1,=-5,d=-9-(-5)=-4,这个数列通项公式是:,a,n,=-5+(,n,-1)(-4)=-4,n,-1,令,-401=-4n-1,得,n=100,-401,是这个数列第,100,项。,14/49,(,1,)求等差数列,3,7,11,第,4,项与
10、第,10,项;,(,2,)判断,102,是不是等差数列,2,,,9,,,16,,,项?假如是,是第几项,假如不是,说明理由。,解:(,1,)依据题意得:,a,1,=3,d=7-3=4,这个数列通项公式是:,a,n,=,a,1,+(n-1)d=4n-1,a,4,=44-1=15,a,10,=410-1=39.,(,2,),由题意得:,a,1,=2,d=9-2=7,这个数列通项公式是:,a,n,=2+(n-1)7,=7n-5(n1),令,102,=7,n-5,得,n=107/7 N,*,102,不是这个数列项。,练习,15/49,解方程组,例,.,在等差数列,a,n,中,已知,a,3,=10,a,
11、9,=28,求,a,12,。,解:由题意得,a,1,+2d=10,a,1,+8d=28,所以,a,12,=,3,12+1,=37,解得:,a,1,=4,d=3,a,n,=4+(,n,-1)3=,3n+1,16/49,练习,1,、填空题:,(1),已知等差数列,3,,,7,,,11,,,,则,a,11,=,(2),已知等差数列,11,,,6,,,1,,,,则,a,n,=,(3),已知等差数列,10,,,8,,,6,,,,中,,-10,是第()项,43,-5n+16,11,2.,已知等差数列,a,n,中,,a,4,=10,a,7,=19,求,a,1,和,d.,这个数列首项是,1,,公差是,3,。,
12、解:依题意得:,解之得,:,17/49,5.,等差中项,观察以下两个数之间,插入一个什么数后者三个数就会成为一个等差数列:,(,1,),2,,,4,(,2,),-1,,,5,(,3,),-12,,,0,(,4,),0,,,0,3,2,-6,0,若,a,,,A,,,b,成等差数列,则,A,叫做,a,与,b,等差中项,18/49,19/49,求出以下等差数列中未知项,(1):3,a,5;,(2):3,b,c,-9;,数列:,1,,,3,,,5,,,7,,,9,,,11,,,13,5,是,3,和,7,等差中项,,1,和,9,等差中项;,9,是,7,和,11,等差中项,,5,和,13,等差中项,.,2
13、0/49,例,3,(,1,)在等差数列,a,n,中,是否有,(,2,)在数列,a,n,中,假如对于任意正整数,n,(,n2,),都有,那么数列,a,n,一定是等差数列吗?,在一个等差数列中,从第,2,项起,每一项(有穷数列末项除外)都是它前一项与后一项等差中项,.,21/49,推广:,a,n,=a,m,+(n,m)d,其实,a,9,=a,1,+,8,d=,a,1,+2d,+(,9,-,3,)d,例,4.,在等差数列,a,n,中,已知,a,3,=10,a,9,=28,求,d,。,a,9,=,a,3,+(,9,-3)d,22/49,解析:,由等差数列通项公式得,等差数列通项公式普通形式,:,a,n
14、,=a,m,+(n,m)d,.,3.,等差数列通项公式推广,:,斜率公式,23/49,2,、等差数列通项公式,1,、等差数列定义,3,、等差数列中项,小结,1,通项公式证实及推广,100,与,180,24/49,例,5,:,某市出租车计价标准为,1.2,元,/km,,起步价为,10,元,即最初,4km,(不含,4,千米)计费,10,元。假如某人乘坐该市出租车去往,14km,处目标地,且一路通畅,等候时间为,0,,需要支付多少车费?,点评:用等差数列处理实际问题步骤,:,分析题意,构建等差数列模型,求解等差数列,完成实际问题解答,解:,依据题意,当该市出租车行程大于或等于,4km,时,每增加,1
15、km,,乘客需要支付,1.2,元,.,所以,我们能够建立一个等差数列,a,n,来计算车费,.,令,a,1,=11.2,,表示,4km,处车费,公差,d=1.2,。,那么当出租车行至,14km,处时,,n=11,,,此时需要支付车费,a,11,=11.2,(11,1)1.2=23.2,答:需要支付车费,23.2,元。,25/49,例,6,.,已知三个数成等差数列,其和,15,,其平方和为,83,,求此三个数,.,则,(,a,-,d,)+,a,+(,a,+,d,)=15,(,a,-,d,),2,+,a,2,+(,a,+,d,),2,=83,所求三个数分别为,3,,,5,,,7,或,7,,,5,,,
16、3.,解得,a,5,,,d,2.,解:设此三个数分别为,a,-,d,,,a,,,a,+,d,,,变:三个数组成递减等差数列,26/49,练习,1,、等差数列,a,n,前三项和为,12,,,前三项积为,48,,求,a,n,。,三个数等差设法:,a-d,,,a,,,a+d,练习,2,、成等差数列四个数之和为,26,,第二个与第三个数之积为,40,,求这四个数。,四个数等差设法:,a-3d,,,a-d,,,a+d,,,a+3d,公差为,2d,。,27/49,设项技巧:,(,1,)若有三个数成等差数列,则可设为,(,2,)若有四个数成等差数列,则可设为,(,3,)若有五个数成等差数列,则可设为,公差为
17、,d,公差为,2d,公差为,d,28/49,例,7,如图,三个正方形边,AB,,,BC,,,CD,长组成等差数列,且,AD,21cm,,这三个正方形面积之和是,179cm,2,.,(,1,)求,AB,,,BC,,,CD,长;,(,2,)以,AB,,,BC,,,CD,长为等差数列前三项,以第,9,项为边长正方形面积是多少?,3,,,7,,,11,a,9,=35,S,9,=1225,29/49,d,计算方法,判断等差数列方法,:,小结,2,30/49,6.,等差数列性质,:,已知数列 为等差数列,那么有,性质,1,:若 成等差数列,则,成等差数列,.,证实:依据等差数列定义,,即 成等差数列,.,
18、如 成等差数列,成等差数列,.,推广:,在等差数列,有规律,地取出若干项,所得新数列依然为等差数列。(如奇数项,项数是,7,倍数项),31/49,推广:,已知一个等差数列首项为,a,1,,公差为,d,a,1,,,a,2,,,a,3,,,a,n,(,1,)将前,m,项去掉,其余各项组成数列是等差数列吗?假如是,他首项与公差分别是多少?,a,m+1,,,a,m+2,,,a,n,是等差数列,首项为,a,m+1,,公差为,d,,项数为,n-m,32/49,已知一个等差数列首项为,a,1,,公差为,d,a,1,,,a,2,,,a,3,,,a,n,(,2,)取出数列中全部奇数项,组成一个数列,是等差数列吗
19、?假如是,他首项与公差分别是多少?,a,1,,,a,3,,,a,5,,,是等差数列,首项为,a,1,,公差为,2d,取出是全部偶数项呢?,a,2,,,a,4,,,a,6,,,是等差数列,首项为,a,2,,公差为,2d,33/49,已知一个等差数列首项为,a,1,,公差为,d,a,1,,,a,2,,,a,3,,,a,n,(,3,)取出数列中全部项是,7,倍数各项,组成一个数列,是等差数列吗?假如是,他首项与公差分别是多少?,a,7,,,a,14,,,a,21,,,是等差数列,首项为,a,7,,公差为,7d,取出是全部,k,倍数项呢?,a,k,,,a,2k,,,a,3k,,,是等差数列,首项为,a
20、,k,,公差为,kd,34/49,已知一个等差数列首项为,a,1,,公差为,d,a,1,,,a,2,,,a,3,,,a,n,(,4,)数列,a,1,+a,2,,,a,3,+a,4,,,a,5,+a,6,,,是等差数列吗?公差是多少?,a,1,+a,2,,,a,3,+a,4,,,a,5,+a,6,,,是等差数列,公差为,2d,数列,a,1,+a,2,+a,3,,,a,2,+a,3,+a,4,,,a,3,+a,4,+a,5,是,等差数列吗?公差是多少?,a,1,+a,2,+a,3,,,a,2,+a,3,+a,4,,,a,3,+a,4,+a,5,是等差数列,,公差为,3d,。,35/49,例:,36
21、/49,性质,2,:设 若 则,证实:,设首项为,,则,推论,:,在等差数列中,与首末两项距离相等两项和,等于首末两项和,即,尤其地,,p=q,时,即,注意:逆命题,是不一定成立,;,37/49,判断:,可推广到三项,四项等,注意:等式两边作和项数必须一样多,38/49,练习,.,在等差数列,a,n,中,,(1),已知,a,6,+,a,9,+,a,12,+,a,15,=20,,求:,a,1,+,a,20,(2),已知,a,3,+,a,11,=10,,求:,a,6,+,a,7,+,a,8,(3),已知,a,2,+,a,14,=10,,能求出,a,16,吗?,10,15,例,3.,在等差数列,a,
22、n,中,,a,6,19,a,15,=46,,求,a,4,+,a,17,值,不能,(4),在等差数列,a,n,中,a,1,-a,5,+a,9,-a,13,+a,17,=117,则,a,3,+a,15,=,(),117,39/49,若数列,a,n,是等差数列,公差为,d,,设,c,k,为常数,则,a,n,+k _,等差数列,公差为,_,;则,ca,n,+k_,等差数列,公差为,_.,若数列,a,n,为等差数列,公差为,d,,则,ka,n,_,等差数列,公差为,_.(k,是常数,),若数列,a,n,与,b,n,都为等差数列,公差分别为,d,1,d,2,,则,a,n,+b,n,_,等差数列,公差为,_
23、;,则,a,n,-b,n,_,等差数列,公差为,_,,,也是,kd,性质,3,.,也是,也是,d,cd,性质,4,.,性质,5,.,pa,n,+qb,n,_,等差数列,公差为,_.(,p,q,为常数,),也是,也是,也是,d,1,+d,2,d,1,-d,2,pd,1,+qd,2,40/49,2,.,若,a,p,=,q,,,a,q,=,p,(,pq,),,求,a,p+q,d=,-1,a,p+q,=,0,性质,6,.,41/49,例,2,(1),已知等差数列,a,n,中,,a,3,a,15,=30,求,a,9,,,a,7,a,11,解:,(,1,),a,9,是,a,3,和,a,15,等差中项,(2
24、),已知等差数列,a,n,中,,a,3,a,4,a,5,a,6,a,7,=150,,求,a,2,a,8,值,7+11=3+15,(,2,),3+7=4+6=5+5,a,3,a,4,a,5,a,6,a,7,=5 a,5,=150,即,a,5,=30,故,a,2,a,8,=2 a,5,=60,a,7,a,11,=a,3,a,15,=30,a,3,a,7,=a,4,a,6,=2 a,5,42/49,(1),等差数列,a,n,中,,a,3,a,9,a,15,a,21,=8,,则,a,12,=,(2),已知等差数列,a,n,中,,a,3,和,a,15,是方程,x,2,6x,1=0,两个根,则,a,7,a
25、,8,a,9,a,10,a,11,=,(3),已知等差数列,a,n,中,,a,3,a,5,=,14,2a,2,a,6,=,15,,则,a,8,=,跟踪训练,2,-19,(4),已知,a,4,+,a,5,+,a,6,+,a,7,=56,,,a,4,a,7,=187,,求,a,14,及公差,d,.,d=,_,2,a,14,=,_,3,d=2,a,14,=31,或,43/49,1.,等差数列,a,n,前三项依次为,a,-6,,,2,a,-5,,,-3,a+,2,,则,a,等于(,),A,.-1,B,.1,C,.-2,D.2,B,2.,在数列,a,n,中,a,1,=1,,,a,n,=,a,n+,1,+
26、4,,则,a,10,=,2(2,a,-5)=(-3,a+2,)+(,a,-6,),提醒,1:,提醒:,d=a,n+,1,a,n,=4,-35,3.,在等差数列,a,n,中,(1),若,a,59,=70,,,a,80,=112,,求,a,101,;,(2),若,a,p,=,q,,,a,q,=,p,(,pq,),,求,a,p+q,d=,2,a,101,=154,d=,-1,a,p+q,=,0,本节练习,44/49,45/49,练习,已知 ,求 值。,解,:,46/49,五、小结,1.,定义:,a,n,-,a,n,-1,=,d,(,n,2,)或,a,n,+1,-,a,n,=,d,(,n,N*),2.,通项公式,a,n,=,a,1,+(,n,-1),d,a,n,=,a,m,+(,n-m,),d,a,n,为等差数列,3.,等差数列性质,a,n,+1,-,a,n,=d,a,n,+1,=a,n,+d,a,n,=,a,1,+,(,n-,1),d,a,n,=,kn +b,(,k,、,b,为常数),47/49,课后作业:,1.,2,.,3,.,48/49,在等差数列,a,n,中,(1),已知,a,6,+,a,9,+,a,12,+,a,15,=,4,0,,求,a,1,+,a,20,(2,),已知,a,3,+,a,11,=20,,求,a,6,+,a,7,+,a,8,5,.,4.,6,.,49/49,