资源描述
数学基础模块 上册
1.1.2 集合的表示方法
【教学目标】
1. 掌握集合的表示方法;能够按照指定的方法表示一些集合.
2. 发展学生运用数学语言的能力;培养学生分析、比较、归纳的逻辑思维能力.
3. 让学生感受集合语言的意义和作用,学习从数学的角度认识世界;通过合作学习培养学生的合作精神.
【教学重点】
集合的表示方法,即运用集合的列举法与描述法,正确表示一些简单的集合.
【教学难点】
集合特征性质的概念,以及运用描述法表示集合.
【教学方法】
本节课采用实例归纳,自主探究,合作交流等方法.在教学中通过列举例子,引导学生讨论和交流,并通过创设情境,让学生自主探索一些常见集合的特征性质.
【教学过程】
环节
教学内容
师生互动
设计意图
导
入
1. 集合、元素、有限集和无限集的概念是什么?
2. 用符号“Δ与“Ï”填空白:
(1) 0 N;
(2) - Q;
(3)- R.
师:刚才复习了集合的有关概念,这节课我们一起研究如何将集合表示出来.
回顾旧知;
学习新知.
新
课
新
课
新
课
1. 列举法.
当集合元素不多时,我们常常把集合的元素列举出来,写在大括号“{}”内表示这个集合,这种表示集合的方法叫列举法.
例如,由1,2,3,4,5,6这6个数组成的集合,可表示为:
{1,2,3,4,5,6}.
又如,中国古代四大发明构成的集合,可以表示为:
{指南针,造纸术,活字印刷术,火药}.
有些集合元素较多,在不发生误解的情况下,可列几个元素为代表,其他元素用省略号表示.
如:小于100的自然数的全体构成的集合,可表示为
{0,1,2,3,…,99}.
例1 用列举法表示下列集合:
(1) 所有大于3且小于10的奇数构成的集合;
(2) 方程 x2-5 x+6=0的解集.
解 (1) {5,7,9};
(2) {2,3}.
练习1 用列举法表示下列集合:
(1) 大于3小于9的自然数全体;
(2) 绝对值等于1的实数全体;
(3) 一年中不满31天的月份全体;
(4) 大于3.5且小于12.8的整数的全体.
2. 性质描述法.
给定 x 的取值集合 I,如果属于集合 A 的任意元素 x 都具有性质 p(x),而不属于集合 A 的元素都不具有性质p(x),则性质 p(x)叫做集合A的一个特征性质,于是集合 A 可以用它的特征性质描述为 {xÎI | p(x)} ,它表示集合 A是由集合 I 中具有性质 p(x)的所有元素构成的.这种表示集合的方法,叫做性质描述法.
使用特征性质描述法时要注意:
(1) 特征性质明确;
(2) 若元素范围为 R,“xÎR”可以省略不写.
例2 用性质描述法表示下列集合:
(1) 大于3的实数的全体构成的集合;
(2) 平行四边形的全体构成的集合;
(3) 平面 a 内到两定点 A,B 距离相等的点的全体构成的集合.
解 (1){ x | x >3};
(2){ x | x 是两组对边分别平行的四边形};
(3) l={ P Îa ,|PA|=|PB|,A,B 为a 内两定点}.
练习2 用性质描述法表示下列集合:
(1) 目前你所在班级所有同学构成的集合;
(2) 正奇数的全体构成的集合;
(3) 绝对值等于3的实数的全体构成的集合;
(4) 不等式4 x-5<3的解构成的集合;
(5)所有的正方形构成的集合.
师:强调要注意的问题:
①注意区别 a 与 {a}.
a 是集合{a}的一个元素,而{a}表示一个集合.
例如,某个代表团只有一个人,这个人本身和这个人构成的代表团是完全不同的;
②用列举法表示集合时,不必考虑元素的前后顺序.
师:集合{1,2}与{2,1}表示同一个集合吗?
生:是.
多媒体展示例题1.
学生口答.
通过教师讲解、师生问答,详细说明什么是特征性质.
出示例子:正偶数构成的集合.它的每一个元素都具有性质“能被2整除且大于0”,而这个集合外的其他元素都不具有这种性质,性质“能被2整除,且大于0”就是此集合的一个特征性质.
引导学生根据上面的描述总结集合的特征性质是什么?
师生共同归纳出性质描述法.
教师强调用特征性质描述法时应注意的两个要点.
讲解例题2,板书详细的解题过程.
师:(1) 一个集合的特征性质不是唯一的.如平行四边形全体也可表示为
{ x | x 是有一组对边平行且相等的四边形}.
(2) 在几何中,通常用大写字母表示点(元素),用小写字母表示点的集合.
学生模仿练习.请学生在黑板上写下答案,引导全班学生统一订正.
老师点拨、解答学生疑难.
按集合元素不多和集合元素较多分类讲解,便于学生接受.
多举实例也有利于概念的理解.
通过一组简单的口答题,掌握集合的列举法.
通过例1和练习1,巩固列举法的使用.
对集合性质描述法的理解是难点,此处通过举例,由特殊到一般,便于学生突破这一思维障碍.
通过例2,让学生掌握由描述法表示集合的不同类型:有限集、无限集或代数、几何的表示方法,并使学生规范解题步骤.
通过练习,进一步突出重点,深化两种表示方法的灵活运用.
小
结
本节课学习了以下内容:
1. 列举法.
2. 性质描述法.
3. 比较两种表示集合的方法,分析它们所适用的不同情况.
师生共同分析总结:
1. 有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法.
如:集合{2}.
2. 有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法.
如:集合 {xÎQ|1≤x≤4}.
以学生为主体,关注学生对本节课的体验.
作
业
教材 P9,练习B组 第1,2题.
学生课后完成.
巩固拓展.
7
展开阅读全文