1、1 巩固练习:教师展示下列图片,学生快速回答:2.13mnab 2.11 2.12 结论:1.一般地,在同一平面内,两条直线的位置关系有两种: 和 . 2.定义分别为: 。问题1:在2.11中,直线m和n 的关系是 ;a和b是 ;a和n是 。问题2:在2,12和2.13中你能提出哪些问题?请先画一画:两条直线直线AB和CD,交于点O,再回答下列问题.动手实践一.2.1512342.142.16 问题1:观察2.14:1和2的位置有什么关系?大小有何关系?为什么?小组合作交流,尝试用自己的语言描述对顶角的定义。问题2:剪子可以看成图2.14,那么剪子在剪东西的过程中,1和2还保持相等吗?3和4呢
2、?你有何结论?问题3:下列各图中,1和2是对顶角的是( )12121212ABCD问题4:如图2.16所示,有一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数吗?你能说出所量角是多少度吗?为什么?注意:互余与互补是指两个角之间的数量关系,与它们的位置无关。补角定义:一般地,如果两个角的和是1800,那么称这两个角互为补角(supplementary angle)问题1:小组合作,每人编一道有关余角或者补角的题目,其余同学抢答,组长记录、整理各种题型,练习2分钟。教师巡视,给予评价,捕捉好资源。问题2:教师将捕捉到的好资源用投影仪集体展示,全班抢答,及时给予评价。问题3:下
3、列说法中,正确的有 。(填序号) 已知A=40,则A的余角=500若1+2=90,则1和2互为余角。若1+2+3=180,则1、2和3互为补角。若A=4026,则A的补角=13934一个角的补角必为钝角。一个锐角的补角比这个角的余角大900活动目的:据学生活泼好动、争强好胜的心理,设置问题1和问题2可以更好地激发学生的参与意识,在竞争中加深对概念的理解,提升所编题的质量,促进合作交流的意识。问题3是针对学生易错题而改编的一组判断题,这种形式能引导学生逐步加深对余角、补角的概念及其性质的理解和掌握。活动注意事项:学生在编题的过程中,教师一定要仔细聆听每组的发言,对每组的表现予以点拨和激励,注意收
4、集出色的资源及学生出错的信息,教师还应关注学生已经掌握了什么?具备了什么能力?还存在哪些不足? 展示时给予合理的评价和强调。 动手实践三 打台球时,选择适当的方向,用白球击打红球,反弹后的红球会直接入袋,此时1=2,将图2.17抽象成图2.18,ON与DC交于点O,DON=CON=900,1=22.172DCO134ANB2.18同角或者等角的余角相等。同角或者等角的补角相等。小组合作交流,解决下列问题:在图2.18中问题1:哪些角互为补角?哪些角互为余角?问题2:3与4有什么关系?为什么?问题3:AOC与BOD有什么关系?为什么?你还能得到哪些结论? 学以致用,步步为营ABC2.19ABC2
5、.110D问题1:.因为1+2=90,2+3=90,所以1= ,理由是 . 因为1+2=180,2+3=180,所以1= ,理由是 .问题2:用你手中的三角板,画一个直角三角形,如图2.19.则A是B的 。变式训练: 在的基础上,做CDA=900。如图2.110.1. 则A的余角有哪几个?为什么?2. 请找出互补的角,并说明理由。3. 你还能提出哪些问题?试试看吧!2.112ODECBAOBACDE2.111拓展延伸,综合应用 问题1:如图2.111已知:直线AB与CD交于点O, EOD=900,回答下列问题:1. AOE的余角是 ;补角是 。2. AOC的余角是 ;补角是 ;对顶角是 。问题2:如图2.112,点O在直线AB上,DOC和BOE都等于900.请找出图中互余的角、互补的角、相等的角,并说明理由。先独立探究,再小组交流。