1、第一章 概率论的基本概念(一) 1、多选题: 以下命题正确的是( )。; ; . 某学生做了三道题,表示第题做对了的事件,则至少做对了两道题的事件可表示为( ). 2、为三个事件,说明下述运算关系的含义:3、个工人生产了三个零件,与分别表示他生产的第个零件为正、次品的事件。试用与表示以下事件: 全是正品; 至少有一个零件是次品; 恰有一个零件是次品; 至少有两个零件是次品。4、 下列命题中哪些成立,哪些不成立:; ; ; ; ; 。(二)1、选择题: 若事件与相容,则有( ) ; ; ; 事件与互相对立的充要条件是( ) 2、袋中有12个球,其中红球5个,白球4个,黑球3个。从中任取9个,求此
2、9球恰好有4个红球,3个白球,2个黑球的概率。3、4、在扑克牌游戏(共52张牌,“”最大)中,求以下事件的概率:以“”为头的同花顺次五张牌;其它的同花顺次五张牌;有四张牌同点数;有三张牌同点数且另两张牌也同点数;五张同花;异花顺次五张牌;三张同点数且另两张牌不同点数;五张中有两对; 五张中有一对。 (三)1、选择题: 已知且,则( )成立。 ; ; ; 。 若且,则( )成立。; ; 相容; 不相容。2、 知,求。3、 种灯泡能用到3000小时的概率为0.8,能用到3500小时的概率为0.7。求一个已用到了3000小时的灯泡还可以再用500小时的概率。4、某市男性色盲发病率为7%,女性色盲发病
3、率为0.5%。今有一人到医院求治色盲求此人为女性的概率。(设该市性别结构为男 : 女=0.502 : 0.498)5、有两箱同类型的零件。第一箱装50只,其中10只一等品;第二箱装30只,其中18只一等品。今从两箱中任意挑出一箱,然后从该箱中取零件两次,每次任取一只,做不放回抽样。求 第一次取到的零件是一等品的概率, 第一次取到的零件是一等品的条件下,第二次取到的也是一等品的概率。(四)1、选择题(可能不止一个选项): 对于事件与,以下命题正确的是( ),若互不相容,则也互不相容; 若相容,则也相容; 若独立,则也独立; 若对立,则也对立; 若事件与独立,且,则( )成立,; ; 相容; 不相
4、容。2、 知互相独立,证明也互相独立。3、设为互相独立的事件,求证都与独立。4、一射手对同一目标进行四次独立的射击,若至少射中一次的概率为,求此射手每次射击的命中率。5、甲、乙、丙三人同时各用一发子弹对目标进行射击,三人各自击中目标的概率分别是0.4、0.5、0.7。目标被击中一发而冒烟的概率为0.2,被击中两发而冒烟的概率为0.6,被击中一发则必定冒烟,求目标冒烟的概率。6、袋中有个黑球,个白球,甲、乙、丙三人依次从袋中取出一个球(取后不放回),分别求出他们各自取到白球的概率。7、甲、乙、丙三个炮兵阵地向目标发射的炮弹数之比为172,而各地每发炮弹命目标的概率分别为0.05、0.1、0.2。
5、现在目标已被击毁,试求目标是被甲阵地击毁的概率。 第二章 随机变量及其分布(一)1、填空题:. 当 时,是随机变量的概率分布,当 时, 是随机变量的概率分布;. 当 时, 是随机变量的概率分布; 设某射手对某一目标进行独立射击,每次射击的命中率均为,若以表示射击进行到击中目标为止时所需的射击次数,则的分布律为 ; 进行重复独立试验,设每次试验成功的概率均为3/4。用表示直到试验获得成功所需的试验次数,则的分布律为 ; 把一枚质量均匀的硬币独立地抛掷次,以表示此次抛掷中落地后正面朝上的次数,则的分布律为 。2、只同类型的零件中有只次品,现在从中取次,每次取只,取后不放回。以表记取出的只中的次品数
6、,求的分布律与分布函数。3、袋中有6个球,其中三个球上各印有1个点,两个球上各印有2个点,一个球上印有3个点。从此袋中随机地取出3个球,并以表记取出的三个球上点数之和,试求随机变量的分布律与分布函数及以下概率:。 (二)1、以下函数能否成为某随机变量的概率密度: ; ; , ( ); ( );()2、设连续型随机变量的概率密度为: 试求:(1)常数;(2)的分布函数;(3)概率。3、设随机变量的概率密度为:试求:(1)常数;(2)的分布函数;(3)概率。4、设连续型随机变量的分布函数为试求: 常数,概率密度, 。(三)0.40.30.20.11、设随机变量的分布律如右。求:;的分布律。2、已知
7、随机变量的概率密度为求的函数的概率密度。3、设顾客在某银行的窗口等待服务的时间(以分计)服从参数为的指数分布, 某顾客在窗口等待服务,若超过分钟,他就离开。他一个月要到银行次。以表示一个月内他未等到服务而离开的次数,写出的分布律,并求。第三章 多维随机变量及其分布(一)1、若随机变量独立,分布函数分别为则()的联合分布函数为( )。a. b. c. d.2、设二维随机变量取数组(,-1)、(0,)、()、(0,-1)的概率分别为a、b、试求: 的联合分布律; 确定常数a和b,使和相互独立; 分别关于和的边缘分布律。 3、甲、乙两人独立地各进行两次射击,假设甲的命中率为0.2,乙的命中率为0.5
8、;以X、Y分别表示甲、乙的命中次数,试求X、Y的联合分布律。(二)1、设(X,Y)为二维随机变量,其联合概率密度为: 试求:(1)常数c; (2)PX0.5;Y0.7;PX0.5;PYa,已知P(AB)=7/9,求常数a.3、设某班车起点站上车人数X服从参数为(0)的泊松分布,每位乘客在中途下车的概率为p(0p1),乘客中途下车与否相互独立。以Y表示在中途下车的人数,求:(1) 在发时有n个乘客的条件下,中途有m人下车的概率;(2) 二维随机变量(X,Y)的概率分布。4、设随机变量X、Y相互独立,X具有概率密度Y服从0,1内的均匀分布,试求Z=X+Y的概率密度函数。5、设随机变量X与Y相互独立
9、,其概率密度分别为:, 试求随机变量Z=X+Y的概率密度。6、已知随机向量(X,Y)服从正方形G=(x,y): 1x3, 1y3上的均匀分布,试求随机变量U=|X-Y|的概率密度p(u)。第四章 随机变量的数字特征(一)1、选择题(每小题只有一个正确答案,把正确的题号写的括号内):(1)掷一个均匀的骰子,所得点数的数学期望为( )。a . 1, b . , c . , d . 6(2)已知100个产品中有10个次品,从中任意取出5个产品其中次品数的期望为( ). a .0.5 , b .0.25, c .1 , d .1 2、填空题:(1) 连续型随机变量X具有概率密度 ,则 。(2) 设随机
10、变量与相互独立,且都服从参数为的两点分布,并记=,则与的联合分布为 ,的期望 .3、游客乘电梯从底层到电视塔顶层观光,电梯于每个整点的5分钟,25分钟和55分钟从底层起行。假设一游客在早八点第分钟到达底层候梯,且,求该游客等候时间的数学期望。4、某工厂生产的某种设备的寿命(以年计)服从指数分布,其概率密度为:。工厂规定,出售的设备在售出一年之内可以调换,若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元,试求厂方出售一台设备净赢利的数学期望。5、设随机变量互相独立,且其概率密度分别为: , .试求:(1),(2).6、设在上服从均匀分布,其中由轴,轴及直线围成,求,。 7、设随机变
11、量相互独立,且, 试求随机变量的概率密度函数。(二) 1、选择题(1) 掷一对均匀的骰子,其点数之和的方差为 (2)概率密度为的随机变量的方差为 (3)设与的相关系数=0,则 a. 与相互独立。 b. 与不一定相关。 c. 与必不相关。 d. 与必相关。(4)设随机变量与的期望和方差存在,且,则下列说法哪个是不正确的 。 a. b. , c. 与不相关, d. 与独立;2、填空题:(1) 设随机变量X的分布函数为, 则 , 。(2) 设随机变量与相互独立,并且, 则 。(3) 设随机变量取的概率都是0.5,那么关于原点的前四阶矩1= ,2= ,3= ,4= 。(4)设随机变量的数学期望,方差,
12、则由契比雪夫不等式有 。3、设随机变量的概率密度为求。 4、一门大炮不断地对目标进行轰击,假定目标被击中3次才能摧毁,且各次轰击相互独立,在每次轰击中击中目标的概率是2/3,规定在5次以内轰击到摧毁目标为止,而轰击5次后必停止,求总共轰击次数的期望与方差。 5、在每次试验中,事件发生的概率为0.5,利用契比雪夫不等式估计:在1000试验中,事件发生的次数X在400600之间的概率。6、设是二维随机变量,已知: 试求7、已知随机变量与都服从二项分布B(20,0.1),并且与的相关系数xy=0.5,试求X+Y的方差及与的协方差。8、设连续型随机变量的概率密度是偶函数,且,试证与不相关。 第五章 大
13、数定律与中心极限定理1、 每次射击中,命中目标的炮弹数的均值为2,方差为,求在100次射击中有180到达220发炮弹命中目标的概率2、由100个相互独立起作用的部件组成的一个系统在运行过程中,每个部件能正常工作的概率为90% 为了使整个系统能正常运行,至少必须有85%的部件正常工作,求整个系统能正常运行的概率3、设有30个同类型的某电子器件,若的寿命服从参数为的指数分布,令为30个器件正常使用的总计时间,求4、在天平上重复称量一重为a的物品,假设各次称量结果相互独立且同服从正态分布,若以表示次称量结果的平均值,问至少取多大,使得 5、某单位设置一电话总机,共有200门电话分机,每门电话分机有5
14、%的时间要用外线通话,假设各门分机是否使用外线通话是相互独立的,问总机至少要配置多少条外线,才能以90%的概率保证每门分机要使用外线时,有外线可供使用第六章 样本及抽样分布1、设总体, 是来自的样本,求 2、设总体, 是来自的样本,求 样本均值与总体值之差的绝对值大于1的概率; ;3、设总体, 是来自的样本,求 证明统计量服从自由度为2的分布第七章 参数估计1、设总体服从负指数分布,其概率密度函数为其中,试求的矩估计量。2、使用同一测量仪器对同一值进行了12次独立测量,其结果如下:232.50,232.48,232.15,232.53,232.45,232.30232.48,232.05,23
15、2.45,232.60,232.47,232.30试用矩估计法估计测量值的真值和方差(设仪器无系统误差)。3、设总体服从几何分布,它的分布律为是来自总体的样本,求的极大似然估计量和矩估计量。4、设总体的概率密度为是来自总体的样本,求分别用矩估计法和极大似然估计法求的估计量。5、设总体服从正态分布,是从此总体中抽取的一个样本。试验证下面三个估计量: (1) (2) (3)都是的无偏估计,并指出哪一个估计量有效。6、设和分别为来自正态总体和的样本,其中,已知,试求常数使为的无偏估计量,并使其方差最小。7、设参数的无偏估计量为,其方差依赖于样本容量。若,试证是的相合估计量。8、设总体为其样本的观测值
16、,试求参数的置信度为0.95的置信区间(其中)。9、随机地取某种炮弹9发作试验,测得炮口速度的样本标准差(米/秒)。设炮口速度服从,求这种炮弹的炮口速度的标准差和方差的95%的置信区间。10、设两总体,相互独立,从中抽取的样本,=82,从中抽取的样本,试求的95%的置信区间。11、设两总体,相互独立,从中抽取的样本,从中抽取的样本,算得,试求两总体方差比的90%的置信区间。12、假定每次试验时,出现事件的概率相同但未知。如果在60次独立试验中,事件出现15次,试求的置信度为95%的置信区间。13、从一批某种型号电子管中抽出容量为10的样本,计算的标准差。设整批电子管寿命服从正态分布。试求出这批
17、电子管寿命的标准差的置信度为95%的单侧置信上限。第 八 章 假设检验1、某工作人员在某一个星期里,曾经接见访问者12次,所有这12次的访问恰巧都是在星期二或星期四.试求该事件的概率.是否可断定他只在星期二或星期四接见访问者?若12次访问没有一次是在星期日,是否可以断言星期日他根本不会客?2、 已知某炼铁厂铁水含碳量服从正态分布N(4.55,0.1082).现在测定了9炉铁水,其平均含碳量为4.484,如果估计方差没有变化,可否认为现在生产之铁水平均含碳量仍为4.55()?3、有一批枪弹,出厂时,其初速,其中,经过较长时间储存,取9发进行测试,得样本值(单位:米/秒)如下: 914,920,9
18、10,934,953,945,912,924,940。据检验,枪弹经储存,其初速仍服从正态分布,且可认为不变,问是否可认为这批枪弹的初速显著降低?4、设在木材中抽出100根,测其小头直径,得到样本平均数为,已知标准差.问该批木料小头的平均直径能否认为是在12cm以上?5、从一批灯泡中抽取50个灯泡的随机样本,算得样本平均数小时,样本标准差小时,以的水平,检验整批灯泡的平均使用寿命是否为2000小时?6、某种导线的电阻服从正态分布,今从新生产的一批导线中抽取9根,测其电阻,得欧姆,对于,能否认为这批导线电阻的标准差仍为0.005?7、两厂生产同一产品,其质量指标假定都服从正态分布,标准规格的为均
19、值等于120,现从甲厂抽出5件产品,测得其指标值为119,120,119.2,119.7,119.6从乙厂抽出5件产品,测得其指标值为110.5,106.3,122.2,113.8,117.2试根据这些数据判断该两厂产品是否符合规定的规格120(显著性水平)。8、从某锌矿的东、西两支矿脉中,各抽取样本容量分别为9与8的样本进行测试,得样本含锌平均值及样本方差如下:东支:;西支:.若东、西两支矿脉的含锌量都服从正态分布,问东、西两支矿脉含锌量的平均值是否可以看作一样?9、两台车床生产同一种滚珠(滚珠直径服从正态分布).从中分别抽取8个和9个产品,比较两台车床生产的滚珠直径的方差是否有明显差异()
20、? 甲车床:15.0,14.5,15.2,15.5,14.8,15.1,15.2,14.8; 乙车床:15.2,15.0,14.8,15.2,15.0,15.0,14.8,15.1,14.8。10、甲、乙两个铸造厂生产同一种铸件.假设两厂铸件的重量都服从正态分布,测得重量如下(单位:公斤): 甲厂:93.3,92.1,94.7,90.1,95.6,90.0,94.7, 乙厂:95.6,94.9,96.2,95.1,95.8,96.3。问乙厂铸件重量的方差是否比甲厂的小?11、从总体中抽取容量为80的样本,频数分布如下表区间 频数 6 18 20 36试在显著性水平下检验:总体的概率密度为是否可信?4、 设是来自正态总体的样本, , ,证明统计量服从自由度为2的分布