1、翰林汇课题:曲线运动类型:复习课目的要求:理解并熟悉掌握运动的合成与分解的思想方法,理解掌握匀速圆周运动及其重要公式,能应用有关知误解解决一些实际问题. 第1课 运动的合成与分解知识简析 一、运动的合成1由已知的分运动求其合运动叫运动的合成这既可能是一个实际问题,即确有一个物体同时参与几个分运动而存在合运动;又可能是一种思维方法,即可以把一个较为复杂的实际运动看成是几个基本的运动合成的,通过对简单分运动的处理,来得到对于复杂运动所需的结果2描述运动的物理量如位移、速度、加速度都是矢量,运动的合成应遵循矢量运算的法则:(1)如果分运动都在同一条直线上,需选取正方向,与正方向相同的量取正,相反的量
2、取负,矢量运算简化为代数运算(2)如果分运动互成角度,运动合成要遵循平行四边形定则3合运动的性质和轨迹取决于分运动的情况: 两个匀速直线运动的合运动仍为匀速直线运动 一个匀速运动和一个匀变速运动的合运动是匀变速运动。讨论:二者共线时,为匀变速直线运动,二者不共线时,为匀变速曲线运动。 两个匀变速直线运动的合运动为匀变速运动,当V0合与a0合 共线时为匀变速直线运动,当V0合与a0合(恒定) 不共线时为匀变速曲线运动。 二、运动的分解(1)已知合运动求分运动叫运动的分解 (2)运动分解也遵循矢量运算的平行四边形定则(3)将速度正交分解为 vxvcos和vy=vsin是常用的处理方法(4)速度分解
3、的一个基本原则就是按实际效果来进行分解,常用的思想方法有两种:一种思想方法是先虚拟合运动的一个位移,看看这个位移产生了什么效果,从中找到运动分解的办法;另一种思想方法是先确定合运动的速度方向(物体的实际运动方向就是合速度的方向),然后分析由这个合速度所产生的实际效果,以确定两个分速度的方向三、合运动与分运动的特征:(合运动与分运动的关系)(1) 等时性:合运动所需时间和对应的每个分运动所需时间相等(2) 独立性:一个物体可以同时参与几个不同的分运动,各个分运动独立进行,互不影响(3) 等效性: 合运动跟几个分运动共同叠加的效果相同,合运动和分运动是等效替代关系,不能并存;(4) 矢量性:加速度
4、、速度、位移都是矢量,其合成和分解遵循平行四边形定则。四、物体做曲线运动的条件1曲线运动是指物体运动的轨迹为曲线; 曲线运动的速度方向:曲线在该点的切线方向;曲线运动的性质:速度方向不断变化,故曲线运动一定是变速运动即曲线运动物体一定有加速度。2物体做一般曲线运动的条件:力学条件和运动学条件:运动物体所受的合外力(或加速度)的方向跟它的速度方向不在同一直线上(即合外力或加速度与速度的方向成一个不等于零或的夹角)说明:当物体受到的合外力的方向与速度方向的夹角为锐角时,物体做曲线运动速率将增大,当物体受到的合外力的方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小。3.做曲线运动物体所受的合
5、外力(加速度)方向指向曲线内侧。4.重点掌握的两种情况:一是加速度大小、方向都不变的曲线运动,叫匀变曲线运动,如平抛运动;另一是加速度大小不变、方向时刻改变的曲线运动,如匀速圆周运动运动的合成与分解典型实例:渡河问题;船的靠岸,平抛 各种初速不为零的匀变速运动。规律方法 1、运动的合成与分解的应用:合运动与分运动的关系: 2、小船渡河问题分析思考:小船渡河过程中参与了哪两种运动?这两种运动有何关系?过河的最短时间和最短位移分别决定于什么?3、曲线运动条件的应用 做曲线运动的物体,其轨迹向合外力所指的一方弯曲,若已知物体的运动轨迹,可判断出合外力的大致方向若合外力为变力,则为变加速运动;若合外力
6、为恒力,则为匀变速运动;第2课 平抛物体的运动知识简析 一、平抛物体的运动1、平抛运动:将物体沿水平方向抛出,其运动为平抛运动(1)运动特点:a、只受重力;b、初速度与重力垂直尽管其速度大小和方向时刻在改变,但其运动的加速度却恒为重力加速度g,因而平抛运动是一个匀变速曲线运动。在任意相等时间内速度变化相等。(2)平抛运动的处理方法:平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动。水平方向和竖直方向的两个分运动既具有独立性,又具有等时性(3)平抛运动的规律:以物体的出发点为原点,沿水平和竖直方向建成立坐标。ax=0 ay=0水平方向 vx=v0 竖直方向 vy=gt x=v0t
7、y=gt2做平抛运动的物体,任意时刻速度的反向延长线一定经过此时沿抛出方向水平总位移的中点。证:平抛运动示意如图:设初速度为V0,某时刻运动到A点,位置坐标为(x,y ),所用时间为t.此时速度与水平方向的夹角为,速度的反向延长线与水平轴的交点为, 位移与水平方向夹角为.依平抛规律有: 速度: Vx= V0 Vy=gt 位移: Sx= Vot 由得: 即 所以: 式说明:做平抛运动的物体,任意时刻速度的反向延长线一定经过此时沿抛出方向水总位移的中点。平抛物体在时间t内的位移S可由两式推得s=,位移的方向与水平方向的夹角由下式决定tg=y/x=gt2/v0t=gt/2v0平抛物体经时间t时的瞬时
8、速度vt可由两式推得vt=,速度vt的方向与水平方向的夹角可由下式决定tg=vy/vx=gt/v0平抛物体的轨迹方程可由两式通过消去时间t而推得:y=x2,(可见平抛物体运动的轨迹是一条抛物线)运动时间由高度决定,与v0无关,所以t=,水平距离xv0tv0t时间内速度改变量相等,即vgt,V方向是竖直向下的说明平抛运动是匀变速曲线运动2、处理平抛物体的运动时应注意:水平方向和竖直方向的两个分运动是相互独立的,其中每个分运动都不会因另一个分运动的存在而受到影响即垂直不相干关系;水平方向和竖直方向的两个分运动具有等时性,运动时间由高度决定,与v0无关;末速度和水平方向的夹角不等于位移和水平方向的夹
9、角,由上证明可知tg=2tg规律方法 1、平抛运动的分析方法用运动合成和分解方法研究平抛运动,要根据运动的独立性理解平抛运动的两分运动,即水平方向的匀速直线运动和竖直方向的自由落体运动其运动规律有两部分:一部分是速度规律,一部分是位移规律对具体的平抛运动,关键是分析出问题中是与位移规律有关还是与速度规律有关结论:在斜面上平抛物体落在斜面上的速度方向与斜面的夹角,和平抛的初速度无关,只与斜面的倾角有关2、平抛运动的速度变化和重要推论 水平方向分速度保持vx=v0.竖直方向,加速度恒为g,速度vy =gt,从抛出点起,每隔t时间的速度的矢量关系如图所示这一矢量关系有两个特点:(1)任意时刻的速度水
10、平分量均等于初速度v0; (2)任意相等时间间隔t内的速度改变量均竖直向下,且v=vy=gt.平抛物体任意时刻瞬时刻速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。v0vtvxvyhss/证明:设时间t内物体的水平位移为s,竖直位移为h,则末速度的水平分量vx=v0=s/t,而竖直分量vy=2h/t, , 所以有3、平抛运动的拓展(类平抛运动)带电粒子垂电匀强电场方向进入作类平抛运动。是类平抛运动的典型。关键要搞清楚受力特征,受力情况决定了运动性质。【例7】如图所示,光滑斜面长为a,宽为b,倾角为,一物块沿斜面左上方顶点P水平射入,而从右下方顶点Q离开斜面,求入射初
11、速度说明:运用运动分解的方法来解决曲线运动问题,就是分析好两个分运动,根据分运动的运动性质,选择合适的运动学公式求解第3课 一、匀速圆周运动概念:质点做沿着圆周运动,如果在相等时间内通过的弧长相等,这种运动叫匀速圆周运动。知识简析一、描述圆周运动的物理量1线速度:做匀速圆周运动的物体所通过的弧长与所用的时间的比值。(1)物理意义:描述质点沿切线方向运动的快慢(2)方向:某点线速度方向沿圆弧该点切线方向(3)大小:说明:线速度是物体做圆周运动的即时速度,其方向时刻改变,所以匀速圆周运动是变速运动。2角速度:做匀速圆周运动的物体,连接物体与圆心的半径转过的圆心角与所用的时间的比值。(l)物理意义:
12、描述质点绕圆心转动的快慢 (2)大小: 单位:(rads)3周期T,频率f:意义:做圆周运动物体一周所用的时间叫周期周期的广范含义:完成一次有一定规律变化所需要的时间。 做圆周运动的物体单位时间内沿圆周绕圆心转过的圈数,叫做频率,也叫转速 公式: 说明:匀速圆周运动的物体运行一周所用的时间越少,转动越快(即频率大);反之:运行一周所用的时间越多,转动越慢(即频率小)。4转速:单位时间内绕圆心转过的圈数。r/min5V、T、f的关系:v(或)与r是成正比还是反比,要看前提条件是v(或)一定, T1/f,2/T= v /r=2f,v2r/T2rf=r(T、f、三个量中任一个确定,其余两个也就确定了
13、但v还和半径r有关)6向心加速度(1)概念:匀速圆周运动中需要的向心力产生指向圆心的加速度,称之为向心加速度。(2)物理意义:描述线速度方向改变的快慢的物理量。(3)大小:(4)方向:总是指向圆心,方向时刻在变化不论a心的大小是否变化,它都是个变加速度(5)注意:a与r是成正比还是反比,要看前提条件,若相同,a与r成正比;若v相同,a与r成反比;若是r相同,a与2成正比,与v2也成正比7向心力概念:做匀速圆周运动的物体受到指向圆心的力,这个力就叫做向心力作用:产生向心加速度,只改变线速度的方向,不改变速度的大小因此,向心力对做圆周运动的物体不做功大小:F心= ma心= m= m2 r = mm
14、4n2 R= mv方向:总是沿半径指向圆心,时刻在变化即向心力是个变力说明: 向心力是按效果命名的力,不是某种性质的力,因此,向心力可以由某一个力提供,也可以由几个力的合力提供,要根据物体受力的实际情况判定二、匀速圆周运动1特点:线速度的大小恒定,角速度、周期和频率都是恒定不变的,向心加速度和向心力的大小也都是恒定不变的2性质:是速度大小不变而速度方向时刻在变的变速曲线运动,并且是加速度大小不变、方向时刻变化的变加速曲线运动3加速度和向心力:由于匀速圆周运动仅是速度方向变化而速度大小不变,故仅存在向心加速度,因此向心力就是做匀速圆周运动的物体所受外力的合力4质点做匀速圆周运动的条件:质点具有初
15、速度,并且始终受到方向与线速度方向垂直,时刻指向圆心的大小不变的合外力(即向心力)作用三、变速圆周运动(非匀速圆周运动)典型是:竖直平面的圆周运动。变速圆周运动的物体,不仅线速度大小、方向时刻在改变,而且加速度的大小、方向也时刻在改变,是变加速曲线运动(注:匀速圆周运动也是变加速运动)变速圆周运动的合力一般不指向圆心,变速圆周运动所受的合外力产生两个效果半径(法向)方向的分力:产生向心加速度,而改变速度方向快慢的物理量。法向加速度。切线方向的分力:产生切线方向加速度而改变速度大小切向加速度故利用公式求圆周上某一点的向心力和向心加速度的大小,必须用该点的瞬时速度值四、圆周运动解题思路1灵活、正确
16、地运用公式 Fnman=mv2/rm2rm42r/T2m42fr ;2正确地分析物体的受力情况,找出向心力五、有辐条的圆周转动产生的顺转反现象:如何解释?每1/30秒更一帧,车上有8根对称辐条,若在1/30秒内,每根辐条恰好转过角度为(45、360、365、355)观众觉得车轮是怎样转的。(45度时不动;360时不动、355度倒转)。规律方法 1.线速度、角速度、向心加速度大小的比较在分析传动装置的各物理量时要抓住不等量和相等量的关系同轴的各点角速度和n相等,而线速度vr与半径r成正比在不考虑皮带打滑的情况下传动皮带与皮带连接的两轮边缘的各点线速度大小相等,而角速度v/r与半径r成反比【例1】
17、对如图所示的皮带传动装置,下列说法中正确的是(A)A轮带动B轮沿逆时针方向旋转(B)B轮带动A轮沿逆时针方向旋转(C)C轮带动D轮沿顺时针方向旋转(D)D轮带动C轮沿顺时针方向旋转【例3】如图所示,直径为d的纸质圆筒,以角速度绕轴O高速运动,有一颗子弹沿直径穿过圆筒,若子弹穿过圆筒时间小于半个周期,在筒上先、后留下a、b两个弹孔,已知ao、bo间夹角为弧度,则子弹速度为 2向心力的认识和来源(1)向心力是根据力的效果命名的,不是和重力、弹力、摩擦力相并列的一种类型的力在分析做圆周运动的质点受力情况时,切不可在物体的相互作用力(重力、弹力、摩擦力、万有引力)以外再添加一个向心力(2)物体做匀速圆
18、周运动的条件是:物体的合外力大小不变,方向始终与速度方向垂直且指向圆心。由于匀速圆周运动仅是速度方向变化而速度大小不变的运动,故只存在向心加速度,物体受的外力的合力就是向心力。显然(3)分析向心力来源的步骤是:首先确定研究对象运动的轨道平面和圆心的位置,然后分析圆周运动物体所受的力,作出受力图,最后找出这些力指向圆心方向的合外力就是向心力例如,沿半球形碗的光滑内表面,一小球在水平面上做匀速圆周运动,如图小球做圆周运动的圆心在与小球同一水平面上的O/点,不在球心O,也不在弹力N所指的PO线上这种分析方法和结论同样适用于圆锥摆、火车转弯、飞机在水平面内做匀速圆周飞行等在水平面内的匀速圆周运动的问题
19、。共同点是由重力和弹力的合力提供向心力,向心力方向水平。(4)变速圆周运动向心力的来源:分析向心力来源的步骤同分析匀速圆周运动向心力来源的步骤相向但要注意,一般情况下,变速圆周运动的向心力是合外为沿半径方向的分力提供分析竖直面上变速圆周运动的向心力的来源时,通常有细绳和杆两种模型(5)当物体所受的合外力小于所需要提供的向心力时,即F向时,物体做离心运动;当物体所受的合外力大于所需要的向心力,即F向时,物体做向心运动。3、圆周运动与其它运动的结合圆周运动和其他运动相结合,要注意寻找这两种运动的结合点:如位移关系、速度关系、时间关系等还要注意圆周运动的特点:如具有一定的周期性等点评:对于比较复杂的
20、问题,一定要注意分清物理过程,而分析物理过程的前提是通过分析物体的受力情况进行4、圆周运动中实例分析第4课 圆周运动的应用专题一、圆周运动的临界问题1.圆周运动中的临界问题的分析方法首先明确物理过程,对研究对象进行正确的受力分析,然后确定向心力,根据向心力公式列出方程,由方程中的某个力的变化与速度变化的对应关系,从而分析找到临界值竖直平面内的圆周运动是典型的变速圆周运动。研究物体通过最高点和最低点的情况,并且经常出现临界状态。(圆周运动实例)火车转弯 汽车过拱桥、凹桥3飞机做俯冲运动时,飞行员对座位的压力。物体在水平面内的圆周运动 (汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平
21、面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。万有引力卫星的运动、库仑力电子绕核旋转、洛仑兹力带电粒子在匀强磁场中的偏转、重力与弹力的合力锥摆、(关健要搞清楚向心力怎样提供的)2.特例(1)火车转弯:设火车弯道处内外轨高度差为h,内外轨间距L,转弯半径R。由于外轨略高于内轨,使得火车所受重力和支持力的合力F合提供向心力。 当火车行驶速率V等于V0时,F合=F向,内外轨道对轮缘都没有侧压力当火车行驶V大于V0时,F合F向,内轨道对轮缘有侧压力,F合-N=mv2/R即当火车转弯时行驶速率不等于V0时,其向心力的变化可由内外轨道对轮缘侧压力自行调节,
22、但调节程度不宜过大,以免损坏轨道。(2)水流星模型(竖直平面内的圆周运动)没有物体支撑的小球,在竖直平面做圆周运动过最高点的情况:注意:绳对小球只能产生沿绳收缩方向的拉力临界条件:由mg+T=mv2/L知,小球速度越小,绳拉力或环压力T越小,但T的最小值只能为零,此时小球以重力为向心力,结论:恰能通过最高点:绳子或轨道对小球没有力的作用:mg=mv2/Rv临界=(可理解为恰好转过或恰好转不过的速度)能过最高点条件:VV临= (当VV临时,绳、轨道对球分别产生拉力、压力)不能过最高点条件:VV临 (实际上球还未到最高点就脱离了轨道)讨论: 恰能通过最高点时:mg=,临界速度V临=;可认为距此点
23、(或距圆的最低点)处落下的物体。此时最低点需要的速度为V低临= 最低点拉力大于最高点拉力F=6mg 最高点状态: mg+T1= (临界条件T1=0, 临界速度V临=, VV临才能通过)最低点状态: T2- mg = 高到低过程机械能守恒: 最低点与最高点拉力之差:T2- T1=6mg(g可看为等效加速度) 半圆:过程mgR= 最低点T-mg= 绳上拉力T=3mg; 过低点的速度为V低 = 小球在与悬点等高处静止释放运动到最低点,最低点时的向心加速度a=2g与竖直方向成q角下摆时,过低点的速度为V低 =, 此时绳子拉力T=mg(3-2cosq)(3)有支承的小球,在竖直平面作圆周运动过最高点情况
24、,轻质杆(管)对球产生的弹力情况:注意:杆与绳不同,杆对球既能产生拉力,也能对球产生支持力临界条件:杆和环对小球有支持力的作用 当V=0时,N=mg (N为支持力) (可理解为小球恰好转过或恰好转不过最高点)恰好过最高点时,此时从高到低过程 mg2R=1/2mv2 低点:T-mg=mv2/R T=5mg恰好过最高点时,此时从高到低过程 mg2R= 低点:T-mg=mv2/R T=5mg ;恰好过最高点时,此时最低点速度:V低 =注意:充分理解管壁支撑情况与杆子一样。若是通过圆弧轨道的最高点有一速度,先讨论是否VV临,若是将脱离轨道做平抛运动因为轨道对小球不能产生拉力如果小球带电,且空间存在电场
25、或磁场时,临界条件应是小球所受重力、电场力和洛仑兹力的合力等于向心力,此时临界速度 。要具体问题具体分析,但分析方法是相同的。物理圆与几何圆的最高点、最低点的区别 (以上规律适用于物理圆,不过最高点,最低点, g都应看成等效的)3.解决匀速圆周运动问题的一般方法(1)明确研究对象,必要时将它从转动系统中隔离出来。(2)找出物体圆周运动的轨道平面,从中找出圆心和半径。(3)分析物体受力情况,千万别臆想出一个向心力来。(4)建立直角坐标系(以指向圆心方向为x轴正方向)将力正交分解。(5)3.离心现象离心运动概念:做匀速圆周运动的物体,在所受合力突然消失或者不足于提供圆周运动的所需的向心力的情况下,
26、就做逐渐远离圆心的运动,这种运动称作为离心运动离心运动的条件: 提供给物体做圆周运动的向心力不足或消失。(离心运动两种现象) 当F合= 0时,物体沿切线方向飞出。 当F合m2r或F合m时,物体逐渐远离圆心。离心现象的本质物体惯性的表现 “远离”不能理解为沿半径方向“背离”离心现象离心现的实例: 用提供的力与需要的向心力的关系角度解释离心现象应用:雨伞、链球、洗衣机脱水筒脱水、离心分离器、离心干燥器、离心测速计等防止:汽车转弯时的限速;高速旋转的飞轮、砂轮的限速和防护离心运动的应用和防止措施: 应用:增大线速度v或角速度;减小提供的向心力F供 防止:减小线速度v、角速度或转速;增加提供做圆周运动
27、所需的向心力F供 (1)离心运动的概念:做匀速圆周运动的物体,在所受合力突然消失或者不足于提供圆周运动的所需的向心力的情况下,就做逐渐远离圆心的运动,这种运动称作为离心运动注意:离心运动的原因是合力突然消失,或不足以提供向心力,而不是物体又受到什么“离心力”(2)离心运动的条件:提供给物体做圆周运动的向心力不足或消失。F获F需离心运动的两种情况:当产生向心力的合外力突然消失,物体便沿所在位置的切线方向飞出。当产生向心力的合外力不完全消失,而只是小于所需要的向心力,物体将沿切线和圆周之间的一条曲线运动,远离圆心而去。设质点的质量为m,做圆周运动的半径为r,角速度为,线角速度为,向心力为F,如图所
28、示 F=0 (离心运动)O Fm2r F= m2r(离心运动)(3)对离心运动的理解:当F=m2r或时,物体做匀速圆周运动。当F = 0时,物体沿切线方向飞出做直线运动。 (离心运动)当Fm2r或时,物体逐渐远离圆心运动。 (离心运动)当Fm2r或时,物体逐渐靠近圆心的向心运动。若所受的合外力F大于所需的向心力时,物体就会做越来越靠近圆心的“近心”运动,人造卫星或飞船返回过程就有一阶段是做“近心”运动。(4)离心现象的本质分析 离心现象的本质物体惯性的表现。分析:做匀速圆周运动的物体,由于本身有惯性,总是沿着切线方向运动,只是由于向心力作用,使它不能沿切线方向飞出,而被限制着沿圆周运动。如果提
29、供向心力的合外力突然消失,物体由于本身的惯性,将沿着切线方向运动,这也是牛顿第一定律的必然结果。如果提供向心力的合外力减小,使它不足以将物体限制在圆周上,物体将做半径变大的圆周运动。此时,物体逐渐远离圆心,但“远离”不能理解为“背离”。做离心运动的物体并非沿半径方向飞出,而是运动半径越来越大 。二.“质点做匀速圆周运动”与“物体绕固定轴做匀速转动”的区别与联系(1)质点做匀速圆周运动是在外力作用下的运动,所以质点在做变速运动,处于非平衡状态。(2)物体绕固定轴做匀速转动是指物体处于力矩平衡的转动状态。对于物体上不在转动轴上的任意微小质量团(可说成质点),则均在做匀速圆周运动。规律方法 1.圃周
30、运动中临界问题分析,应首先考虑达到临界条件时物体所处的状态,然后分析该状态下物体的受力特点结合圆周运动的知识,列出相应的动力学方程【小结】 比较复杂的物理过程,如能依照题意画出草图,确定好研究对象,逐一分析就会变为简单问题。找出其中的联系就能很好地解决问题。2.求解范围类极值问题,应注意分析两个极端状态,以确定变化范围章末总结学习天平【自我诊断】重点知识罗列(五角星表示知识的重要程度)1.匀速圆周运动的概念 在相等时间内通过的圆弧长度相等;连接物体与圆心的半径在相等的时间内转过的角度相等线速度、角速度、周期、频率、转速的概念 线速度:运动的物体所通过的弧长s与所用的时间t的比值 vs/t角速度
31、:质点与圆心的半径转过的角度与所用时间t的比值周期: 匀速圆周运动的物体运行一周所用的时间向心力、向心加速度的概念 向心力概念:做匀速圆周运动的物体始终受到一个沿着半径指向圆心的力,这个力叫做向心力概念向心加速度概念:由向心力产生的指向圆心的加速度,称之为向心加速度。离心运动的概念 离心运动概念:做匀速圆周运动的物体,在所受合力突然消失或者不足于提供圆周运动的所需的向心力的情况下,就做逐渐远离圆心的运动,这种运动称作为离心运动2.各物理量的定义:线速度、角速度、周期、频率、转速、向心力和向心加速度 几个物理量的方向:线速度、向心力、向心加速度 线速度方向:质点在圆周上某点的线速度方向沿圆周在该
32、点切线方向向心力(向心加速度)方向:沿着半径指向圆心的力,总是指向圆心,方向时刻在变化圆 周 运 动线速度:vs/t = r/t =2r/T2rf=r 描述匀速圆周运动的物理量角速度:/t =s/rt =2/T= v /r=2f, 物理公式及各量间的关系周期:T=t/n =1/f 向心力:F心ma心=m2 R = m(2/T)2R= m 向心加速度:a心= F心/m=2 R = R= m 圈数质点做匀速圆周运动的条件: 质点具有初速度,并且始终受到方向与线速度方向垂直、时刻指向圆心的大小不变的合外力(即向心力)作用。 运动条件离心运动的条件: 提供给物体做圆周运动的向心力不足或消失。 当F合=
33、 0时,物体沿切线方向飞出。 当F合m2r或F合m时,物体逐渐远离圆心。翰林汇翰林汇翰林汇翰林汇课 题: 万有引力定律 类型:复习课第1课 万有引力定律及其应用知识简析一.开普勒运动定律(轨道、面积、比值定律)(1)开普勒第一定律:所有的行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上(2)开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的面积相等(3)开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等二.万有引力定律(1)内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比,作
34、用力的方向在它们的连线上。(2)公式:FG, 其中,(称为为有引力恒量,由卡文特许扭称实验测出)。(3)适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离对于均匀的球体,r是两球心间的距离 注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之一,式中引力恒量G的物理意义是:G在数值上等于质量均为1kg的两个质点相距1m时相互作用的万有引力三、万有引力和重力 重力是万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心力重力实际上是万有引力的一个分力另一个分力就是物体
35、随地球自转时需要的向心力,如图所示,由于纬度的变化,物体做圆周运动的向心力F向不断变化,因而表面物体的重力随纬度的变化而变化,即重力加速度g随纬度变化而变化,从赤道到两极逐渐增大通常的计算中因重力和万有引力相差不大,而认为两者相等,即m2gG, g=GM/r2常用来计算星球表面重力加速度的大小,在地球的同一纬度处,g随物体离地面高度的增大而减小,即gh=GM/(r+h)2,比较得gh=()2g 在赤道处,物体的万有引力分解为两个分力F向和m2g刚好在一条直线上,则有FF向m2g,所以m2g=F一F向Gm2R自2因地球目转角速度很小G m2R自2,所以m2g= G假设地球自转加快,即自变大,由m
36、2gGm2R自2知物体的重力将变小,当G=m2R自2时,m2g=0,此时地球上物体无重力,但是它要求地球自转的角速度自,比现在地球自转角速度要大得多.四.天体表面重力加速度问题设天体表面重力加速度为g,天体半径为R,由mg=得g=,由此推得两个不同天体表面重力加速度的关系为五天体质量和密度的计算 原理:天体对它的卫星(或行星)的引力就是卫星绕天体做匀速圆周运动的向心力 G=mr,由此可得:M=;=(R为行星的半径)由上式可知,只要用实验方法测出卫星做圆周运动的半径r及运行周期T,就可以算出天体的质量M若知道行星的半径则可得行星的密度第2课散 专题:人造天体(卫星)的运动万有引力及应用:与牛二及
37、运动学公式1思路(基本方法):卫星或天体的运动看成匀速圆周运动, F心=F万 (类似原子模型)处理人造天体问题的基本思路 由于运行中的人造天体,万有引力全部提供人造地球卫星绕地球做圆周运动的向心力,因此所有的人造地球卫星的轨道圆心都在地心解关于人造卫星问题的基本思路:视为匀速圆周运动处理;万有引力充当向心力;根据已知条件选择向心加速度的表达式便于计算;利用代换式gR2=GM推导化简运算过程。注意:人造卫星的轨道半径与它的高度不同 离地面不同高度,重力加速度不同, 说明:可以看出,绕地球做匀速圆周运动的人造卫星的轨道半径r、线速度大小v和周期T是一一对应的,其中一个量确定后,另外两个量也就唯一确
38、定了。离地面越高的人造卫星,线速度越小而周期越大。2方法:F引=G= F心= ma心= m2 R= mm4n2 R 地面附近:G= mg GM=gR2 (黄金代换式) 轨道上正常转:G= m 【讨论(v或EK)与r关系,r最小时为地球半径,v第一宇宙=7.9km/s (最大的运行速度、最小的发射速度);T最小=84.8min=1.4h】G=mr = m M= T2= (M=V球=r3) s球面=4r2 s=r2 (光的垂直有效面接收,球体推进辐射) s球冠=2Rh3理解近地卫星:来历、意义 万有引力重力=向心力、 r最小时为地球半径、最大的运行速度=v第一宇宙=7.9km/s (最小的发射速度
39、);T最小=84.8min=1.4h4同步卫星几个一定:三颗可实现全球通讯(南北极有盲区)轨道为赤道平面 T=24h=86400s 离地高h=3.56104km(为地球半径的5.6倍) V=3.08km/sV第一宇宙=7.9km/s w=15o/h(地理上时区) a=0.23m/s25运行速度与发射速度的区别6卫星的能量:(类似原子模型)r增v减小(EK减小Ep增加),所以 E总增加;需克服引力做功越多,地面上需要的发射速度越大7. 应该熟记常识:地球公转周期1年, 自转周期1天=24小时=86400s, 地球表面半径6.4103km 表面重力加速度g=9.8 m/s2 月球公转周期30天知识
40、简析 一、卫星的绕行角速度、周期与高度的关系(1)由,得,当h,v(2)由G=m2(r+h),得=,当h,(3)由G,得T= 当h,T二、三种宇宙速度:第一宇宙速度(环绕速度):v1=7.9km/s,人造地球卫星的最小发射速度。也是人造卫星绕地球做匀速圆周运动的最大运行速度。第二宇宙速度(脱离速度):v2=11.2km/s,使卫星挣脱地球引力束缚的最小发射速度。第三宇宙速度(逃逸速度):v3=16.7km/s,使卫星挣脱太阳引力束缚的最小发射速度。三、第一宇宙速度的计算方法一:地球对卫星的万有引力就是卫星做圆周运动的向心力G=m,v=。当h,v,所以在地球表面附近卫星的速度是它运行的最大速度。
41、其大小为rh(地面附近)时,=79103m/s方法二:在地面附近物体的重力近似地等于地球对物体的万有引力,重力就是卫星做圆周运动的向心力当rh时ghg 所以v1=79103m/s第一宇宙速度是在地面附近hr,卫星绕地球做匀速圆周运动的最大速度四、两种最常见的卫星 近地卫星。 近地卫星的轨道半径r可以近似地认为等于地球半径R,由式可得其线速度大小为v1=7.9103m/s;由式可得其周期为T=5.06103s=84min。由、式可知,它们分别是绕地球做匀速圆周运动的人造卫星的最大线速度和最小周期。 神舟号飞船的运行轨道离地面的高度为340km,线速度约7.6km/s,周期约90min。 同步卫星
42、。“同步”的含义就是和地球保持相对静止,所以其周期等于地球自转周期,即T=24h。由式G=m= m(r+h)可得,同步卫星离地面高度为 hr358107 m即其轨道半径是唯一确定的离地面的高度h=3.6104km,而且该轨道必须在地球赤道的正上方,运转方向必须跟地球自转方向一致即由西向东。如果仅与地球自转周期相同而不定点于赤道上空,该卫星就不能与地面保持相对静止。因为卫星轨道所在平面必然和地球绕日公转轨道平面重合,同步卫星的线速度 v=3.07103m/s通讯卫星可以实现全球的电视转播,从图可知,如果能发射三颗相对地面静止的卫星(即同步卫星)并相互联网,即可覆盖全球的每个角落。由于通讯卫星都必
43、须位于赤道上空3.6107m处,各卫星之间又不能相距太近,所以,通讯卫星的总数是有限的。设想在赤道所在平面内,以地球中心为圆心隔50放置一颗通讯卫星,全球通讯卫星的总数应为72个。五.了解不同高度的卫星飞行速度及周期的数据 卫星飞行速度及周期仅由距地高度决定与质量无关。设卫星距地面高度为h,地球半径为R,地球质量为M,卫星飞行速度为v,则由万有引力充当向心力可得v=GM/(R+h)。知道了卫星距离地面的高度,就可确定卫星飞行时的速度大小。不同高度处人造地球卫星的环绕速度及周期见下表:高度(km)030050010003000500035900(同步轨道)38000(月球轨道)环绕速度(km/s)7.917 .737. 627.366.535.292.770.97周期(分)84.490 .594.510515021023小时56分28天六、卫星的超重和失重(1)卫星进入轨道前加速过程,卫星上物体超重(2)卫星进入轨道后正常运