资源描述
二次函数在闭区间上的最值归纳
二次函数在闭区间上的最大、最小值问题探讨
设,则二次函数在闭区间上的最大、最小值有如下的分布情况:
即
图象
最大、最小值
对于开口向下的情况,讨论类似。其实无论开口向上还是向下,都只有以下两种结论:
(1)若,则,;
(2)若,则,
另外,当二次函数开口向上时,自变量的取值离开轴越远,则对应的函数值越大;反过来,当二次函数开口向下时,自变量的取值离开轴越远,则对应的函数值越小。
二次函数在闭区间上的最值练习
例1、函数在上有最大值5和最小值2,求的值。
解:对称轴,故函数在区间上单调。
(1)当时,函数在区间上是增函数,故 ;
(2)当时,函数在区间上是减函数,故
例2、求函数的最小值。
解:对称轴
(1)当时,;
(2)当时,;
(3)当时,
改:1.本题若修改为求函数的最大值,过程又如何?
解:(1)当时,;
(2)当时,。
2.本题若修改为求函数的最值,讨论又该怎样进行?
解:(1)当时,,;
(2)当时, ,;
(3)当时,,;
(4)当时, ,。
例3、求函数在区间上的最小值。
解:对称轴
(1)当即时,;
(2)当即时,;
(3)当即时,
例4、讨论函数的最小值。
解:,这个函数是一个分段函数,由于上下两段上的对称轴分别为直线,,当,,时原函数的图象分别如下(1),(2),(3)
因此,(1)当时,;
(2)当时,;
(3)当时,
展开阅读全文