1、一次函数的应用(学案二)例1、某车间有20名工人,每人每天加工甲种零件5件或乙种零件4个,在这20名工人中,派x 人加工甲种零件,其余的加工乙种零件,已知加工一个甲种零件可获利润6元,加工一个乙种零件可获利润24元写出此车间每天所获利润y(元)与x(人)之间的函数表达式;若要使车间每天获利润1260元,问要派多少人加工甲种零件?例2某零件制造车间有工人20名,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件,可获利润150元,每制造一个乙种零件可获利润260元,在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件(1)请写出此车间每天所获利润y(元)与
2、x(人)之间的函数关系式;(2)若要使车间每天所获利润不低于24000元,你认为至少要派多少名工人去制造乙种零件才合适?3、 某服装厂现大A种布料70米,B种布料52米,现计划用这两种布料生产M、N两种型号的时装80套。已知做一套M型号的时装需要A种布料0.6米,B种布料0.9米,可获利45元,做一套N型号的时装需要A种布料1.1米,B种布料0.4米,可获利50元。若设生产N型号的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y元(1)求y与x的函数关系式,并求出自变量x的取值范围;(2)该服装厂在生产这批时装中,当生产N型号的时装多少套时,所获利润最大?最大利润是多少?4、某公司
3、到果园基地购买某种优质水果,果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案。甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回,已知运输费为5000元。 (1) 分别写出该公司两种购买方案的付款(元)与所购买的水果(千克)之间的函数关系式;(2)当购买量在什么范围时,选择哪种购买方案付费少?说明理由。5、某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:注:利润=售价成本(1)该公司对这两种户型住房有哪几种建房方案? (2)该公司如何建
4、房获得利润最大?(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大? 6、光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,现将这50台收割机派往A,B两地区收割小麦,其中30台派往A地区,20台派往B地区两地区与该农机租赁公司商定的每天的租赁价格见下表每台甲型收割机的租金每台乙型收割机的租金A地区1800元1600元B地区1600元1200元(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x之间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案设计出来;