1、已知关于x的二次函数y=x22mx+m2+m的图象与关于x的函数y=kx+1的图象交于两点A(x1,y1)、B(x2,y2);(x1x2)(1)当k=1,m=0,1时,求AB的长;(2)当k=1,m为任何值时,猜想AB的长是否不变?并证明你的猜想(3)当m=0,无论k为何值时,猜想AOB的形状证明你的猜想(平面内两点间的距离公式)如图,已知直线y=x+1与x轴交于点A,与y轴交于点B,将AOB绕点O顺时针旋转90后得到COD(1)点C的坐标是(0,3)线段AD的长等于4;(2)点M在CD上,且CM=OM,抛物线y=x2+bx+c经过点G,M,求抛物线的解析式;(3)如果点E在y轴上,且位于点C
2、的下方,点F在直线AC上,那么在(2)中的抛物线上是否存在点P,使得以C,E,F,P为顶点的四边形是菱形?若存在,请求出该菱形的周长l;若不存在,请说明理由如图1,平面之间坐标系中,等腰直角三角形的直角边BC在x轴正半轴上滑动,点C的坐标为(t,0),直角边AC=4,经过O,C两点做抛物线y1=ax(xt)(a为常数,a0),该抛物线与斜边AB交于点E,直线OA:y2=kx(k为常数,k0)(1)填空:用含t的代数式表示点A的坐标及k的值:A(t,4),k=(k0);(2)随着三角板的滑动,当a=时:请你验证:抛物线y1=ax(xt)的顶点在函数y=的图象上;当三角板滑至点E为AB的中点时,求
3、t的值;(3)直线OA与抛物线的另一个交点为点D,当txt+4,|y2y1|的值随x的增大而减小,当xt+4时,|y2y1|的值随x的增大而增大,求a与t的关系式及t的取值范围已知:关于x的二次函数y=x2+ax(a0),点A(n,y1)、B(n+1,y2)、C(n+2,y3)都在这个二次函数的图象上,其中n为正整数(1)y1=y2,请说明a必为奇数;(2)设a=11,求使y1y2y3成立的所有n的值;(3)对于给定的正实数a,是否存在n,使ABC是以AC为底边的等腰三角形?如果存在,求n的值(用含a的代数式表示);如果不存在,请说明理由如图,已知二次函数的图象经过点A(6,0)、B(2,0)
4、和点C(0,8)(1)求该二次函数的解析式;(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当KCM的周长最小时,点K的坐标为(,0);(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按OAC的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按OCA的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,OPQ的面积为S请问P、Q两点在运动过程中,是否存在PQOC?若存在,请求出此时t的值;若不存在,请说明理由;请求出S关于t的函数关系式,并写出自变量t的取值范围;设S0是中函数S的最大值,直接写出S0的值如图,抛物线y
5、=ax2+bx+c(a0)经过点A(3,0)、B(1,0)、C(2,1),交y轴于点M(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;如图,抛物线y=x2+bx+c与x轴交于点A(2,0),交y轴于点B(0,)直线y=kx过点A与y轴交于点C,与抛物线的另一个交点是D(1)求抛物线y=x2+bx+c与直线y=kx的解析式;(2)设点P是直线AD上方的抛物线上一动点(不与点A、D重合),过点P作 y轴的平行线,交直线AD于点M,作DEy轴于点E探究:是否存在这样的点P,使四边形PMEC是平行四边形
6、?若存在请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,作PNAD于点N,设PMN的周长为l,点P的横坐标为x,求l与x的函数关系式,并求出l的最大值如图,已知抛物线y=ax2+bx+c经过A(3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点( E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,ADF的面积为S求S与m的函数关系式;S是否存在最大值?若存在,求出最
7、大值及此时点E的坐标; 若不存在,请说明理由如图,在平面直角坐标系中,点A、B在x轴上,点C、D在y轴上,且OB=OC=3,OA=OD=1,抛物线y=ax2+bx+c(a0)经过A、B、C三点,直线AD与抛物线交于另一点M(1)求这条抛物线的解析式;(2)P为抛物线上一动点,E为直线AD上一动点,是否存在点P,使以点A、P、E为顶点的三角形为等腰直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由(3)请直接写出将该抛物线沿射线AD方向平移个单位后得到的抛物线的解析式如图,抛物线与直线交于两点,其中点在轴上,点的坐标为。点是轴右侧的抛物线上一动点,过点作轴于点,交于点.(1)求抛物线
8、的解析式;(2)若点的横坐标为,当为何值时,以为顶点的四边形是平行四边形?请说明理由。如图,已知抛物线与直线交于点O(0,0),A(,12),点B是抛物线上O,A之间的一个动点,过点B分别作轴、轴的平行线与直线OA交于点C,E。来源:21世纪教育网(1)求抛物线的函数解析式;(2)若点C为OA的中点,求BC的长;(3)以BC,BE为边构造矩形BCDE,设点D的坐标为(,),求出,之间的关系式。如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P使ABP的面积为10,请直接写出点P的坐标如图,抛物线与x轴交于A、B两点,与y轴交
9、C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线x=(1)求抛物线的解析式;(2)M是线段AB上的任意一点,当MBC为等腰三角形时,求M点的坐标已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,3)(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=x上,并写出平移后抛物线的解析式如图,已知抛物线y=(x2)(x+a)(a0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧(1)若抛物线过点M(2,2),求实数a的值;(2)在(1)的条件下,解答下列问题;求出BCE的面积;在抛物线的对称轴上
10、找一点H,使CH+EH的值最小,直接写出点H的坐标在平面直角坐标系O中,抛物线()与轴交于点A,其对称轴与轴交于点B。(1)求点A,B的坐标;(2)设直线与直线AB关于该抛物线的对称轴对称,求直线的解析式;(3)若该抛物线在这一段位于直线的上方,并且在这一段位于直线AB的下方,求该抛物线的解析式。如图,已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3)(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图中阴影部分)已知二次函数.(1)当二次函数的图象经过坐标原点
11、O(0,0)时,求二次函数的解析式;(2)如题23图,当时,该抛物线与轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.已知抛物线y1=过点A(1,0),顶点为B,且抛物线不经过第三象限。(1)使用a、c表示b;(2)判断点B所在象限,并说明理由;(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(),求当x1时y1的取值范围。如图,在平面直角坐标系中,O为坐标原点,抛物线y=x2+2x与x轴相交于O、B,顶点为A,连接OA(1)求点A的坐标和AOB的度数;(2)若将抛物线y=x2+2x向右平移4个单位,再向下平移2个单位,得到抛物线m,其顶点为点C连接OC和AC,把AOC沿OA翻折得到四边形ACOC试判断其形状,并说明理由;(3)在(2)的情况下,判断点C是否在抛物线y=x2+2x上,请说明理由;(4)若点P为x轴上的一个动点,试探究在抛物线m上是否存在点Q,使以点O、P、C、Q为顶点的四边形是平行四边形,且OC为该四边形的一条边?若存在,请直接写出点Q的坐标;若不存在,请说明理由