1、16.3 分式方程一、教学目标1使学生理解分式方程的意义2使学生掌握可化为一元一次方程的分式方程的一般解法3了解解分式方程解的检验方法4在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧5通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想二、教学重点和难点1教学重点:(1)可化为一元一次方程的分式方程的解法(2)分式方程转化为整式方程的方法及其中的转化思想2教学难点:检验分式方程解的原因3疑点及分析和解决办法:解分式方程的基本
2、思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根让学生在学习中讨论从而理解、掌握三、教学方法:启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法四、教学手段:演示法和同学练习相结合,以练习为主五、教学过程第一课时(一)复习及引入新课1提问:什么叫方程?什么叫方程的解?答:含有未知数的等式叫做方程使方程两边相等的未知数的值,叫做方程的解 (二)新课板书课题:分式方程的定义分母里含有未知数的方程叫分式方程以前学过的方程都是整式方程练习:判断下列各式哪个是分式方程在同学讨论的基础上分析:由于我们比较熟悉整式
3、方程的解法,所以要把分式方程转化为整式方程,其关键是去掉含有未知数的分母(三)应用 一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少? 分析:设江水的流速为v千米/时,则轮船顺流航行的速度为(20v)千米/时,逆流航行的速度为(20v)千米/时,顺流航行100千米所用的时间为小时,逆流航行60千米所用的时间为小时。 可列方程=方程两边同乘(20+V)(20V),得100(20V)= 60(20V)解得 V=5检验:将V=5代入方程,左边=右边,所以v5为方程的解。 所以水流速度为5千米/时。 (四
4、)总结 解分式方程的一般步骤: 1在方程的两边都乘以最简公分母,约去分母,化为整式方程 2解这个方程 3把整式方程的根代入最简公分母,看结果是不是零;使最简公分母为零的根不是原方程的解,必须舍去 (五)教学反思:这一课学生对解决分式方程的步骤都比较熟练,但常有学生忘记检验。第二课时一、教学目标: 1、使学生更加深入理解分式方程的意义,会按一般步骤解可化为一元一次方程的分式方程. 2、使学生检验解的原因,知道解分式方程须验根并掌握验根的方法二、重点难点: 1. 了解分式方程必须验根的原因; 2. 培养学生自主探究的意识,提高学生观察能力和分析能力。三、教学过程: (一)复习引入 解方程: 思考:
5、上面两个分式方程中,为什么(1)去分母后所得整式方程的解就是(1)的解,而(2)去分母后所得整式的解却不是(2)的解呢? 学生活动:小组讨论后总结(二)总结 (1)为什么要检验根? 在将分式方程变形为整式方程时,方程两边同乘以一个含未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根)。对于原分式方程的解来说,必须要求使方程中各分式的分母的值均不为零,但变形后得到的整式方程则没有这个要求.如果所得整式方程的某个根,使原分式方程中至少有一个分式的分母的值为零,也就是说使变形时所乘的整式(各分式的最简公分母)的值为零,它就不适合原方程,则不是原方程的解。 (2)验根的方法 一般的,解
6、分式方程时,去分母后所得整式方程的解有可能使原方程中分母为0,因此应如下检验: 将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解。 (三)应用 例1 解方程 解:方程两边同乘x(x3),得 2x3x9 解得 x9 检验:x9时 x(x3)0,9是原分式方程的解。 例2 解方程 解:方程两边同乘(x1)(x2),得 x(x2)(x1)(x2)3 化简,得 x23 解得 x1 检验:x1时(x1)(x2)0,1不是原分式方程的解,原分式方程无解。 四随堂练习 五课时小结:解分式方程的一般步骤。六.教学反思:这一课学生对分式方程都
7、解决得较好,能完整地把检验过程写出来。第三课时一、教学过程 (一)复习提问 1解分式方程的步骤(1)能化简的先化简;(2)方程两边同乘以最简公分母,化分式方程为整式方程;(3)解整式方程;(4)验根 2列方程应用题的步骤是什么? (1)审;(2)设;(3)列;(4)解;(5)答 3由学生讨论,我们现在所学过的应用题有几种类型?每种类型题的基本公式是什么? 在学生讨论的基础上,教师归纳总结基本上有五种: (1)行程问题:基本公式:路程=速度时间 而行程问题中又分相遇问题、追及问题 (2)数字问题 在数字问题中要掌握十进制数的表示法 (3)工程问题 基本公式:工作量=工时工效 (4)顺水逆水问题
8、v顺水=v静水+v水 v逆水=v静水-v水 (二)新课 例3两个工程队共同参加一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成。哪个队的施工速度快? 分析:甲队一个月完成总工程的 ,设乙队如果单独施工1个月能完成总工程的 ,那么甲队半个月完成总工程的,乙队半个月完成总工程的 ,两队半个月完成总工程的 。 等量关系为:甲、乙两个工程总量总工程量,则有 1 (教师板书解答、检验过程) 例4:从2004年5月起某列列车平均提速v千米/时,用相同的时间,列车提速前行驶s千米,提速后比提速前多行驶50千米,提速前列车的平均速度是多少? 分析:这里的字母v,s表示已知数据,设提速前的平均速度为x千米/时,则提速前列车行驶s千米所用的时间为 小时,提速后列车的平均速度为(xv)千米/时,提速后列车行驶(s50)千米所用 的时间为 小时。 等量关系:提速前行驶50千米所用的时间提速后行驶(s50)千米所用的时间 列方程得: (教师板书解答、检验过程)(三)、课堂练习:(四)、小结对于列方程解应用题,一定要善于把生活语言转化为数学语言,从中找出等量关系对于我们常见的几种类型题,我们要熟悉它们的基本关系式(五)、教学反思:这一课学生对用分式解决实际问题的思路比较清晰,能合理找出问题中的相等关系。对用字母表示的已知数有点陌生。