1、函数单调性教学设计一、问题情境1. 如图为某市一天内的气温变化图:(1)观察这个气温变化图,说出气温在这一天内的变化情况(2)怎样用数学语言刻画在这一天内“随着时间的增大,气温逐渐升高或下降”这一特征?2. 分别作出下列函数的图像:(1)y2x(2)yx2(3)yx2根据三个函数图像,分别指出当x(,)时,图像的变化趋势?二、建立模型1. 首先引导学生对问题2进行探讨观察分析观察函数y2x,yx2,yx2图像,可以发现:y2x在(,)上、yx2在(,)上的图像由左向右都是上升的;yx2在(,)上、yx2在(,)上的图像由左向右都是下降的函数图像的“上升”或“下降”反映了函数的一个基本性质单调性
2、那么,如何描述函数图像“上升”或“下降”这个图像特征呢?以函数yx2,x(,)为例,图像由左向右下降,意味着“随着x的增大,相应的函数值yf(x)反而减小”,如何量化呢?取自变量的两个不同的值,如x15,x23,这时有x1x2,f(x1)f(x2),但是这种量化并不精确因此,x1,x2应具有“任意性”所以,在区间(,0)上,任取两个x1,x2得到f(x1),f(x2)当x1x2时,都有f(x1)f(x2)这时,我们就说f(x)x2在区间(,0)上是减函数注意:在这里,要提示学生如何由直观图像的变化规律,转化为数学语言,即自变量变化时对函数值y的影响必要时,对x,y可举出具体数值,进行引导、归纳
3、和总结这里的“都有”是对应于“任意”的2. 在学生讨论归纳函数单调性定义的基础上,教师明晰抽象概括设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1x2时,都有f(x1)f(x2),那么我们就说函数f(x)在区间上是增函数如图8-2(1)如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1x2时,都有f(x1)f(x2),那么我们就说函数f(x)在区间上是减函数如图8-2(2)如果函数yf(x)在区间D上是增函数或减函数,那么我们就说函数yf(x)在这一区间具有(严格的)单调性,区间D叫作yf(x)的单调区间3. 提出问题,组织学生
4、讨论(1)定义在R上的函数f(x),满足f(2)f(1),能否判断函数f(x)在R是增函数?(2)定义在R上函数f(x)在区间(,0上是增函数,在区间(0,)上也是增函数,判断函数f(s)在R上是否为增函数(3)观察问题情境1中气温变化图像,根据图像说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数强调:定义中x1,x2是区间D上的任意两个自变量;函数的单调性是相对于某一区间而言的三、解释应用例题1. 证明函数f(x)2x1,在(,)是增函数注:要规范解题格式2. 证明函数f(x),在区间(,0)和(0,)上都是减函数思考:能否说,函数f(x)在定义域(,0)(0,)上是减函数?3
5、. 设函数yf(x)在区间D上保号(恒正或恒负),且f(x)在区间D上为增函数,求证:f(x)在区间D上为减函数证明:设x1,x2,且x1x2,f(x)在区间D上保号,f(x1)f(x2)0又f(x)在区间D上为增函数,f(x1)f(x2)0,从而g(x1)g(x2)0,g(x)在D上为减函数练习1. 证明:(1)函数f(x)在(0,)上是增函数(2)函数f(x)x2x在(,上是减函数2. 判断函数的单调性,并写出相应的单调区间3. 如果函数yf(x)是R上的增函数,判断g(x)kf(x),(k0)在R上的单调性四、拓展延伸1. 根据图像,简要说明近150年来人类消耗能源的结构变化情况,并对未来100年能源结构的变化趋势作出预测2. 判断二次函数f(x)ax2bxc,(a0)的单调性,并用定义加以证明3. 如果自变量的改变量xx2x10,函数值的改变量yf(x2)f(x1)0,那么函数f(x)在区间D上是增函数还是减函数?4. 函数值的改变量与自变量的改变量的比叫作函数f(x)在x1,x2之间的平均变化率(1)根据函数的平均变化率判断yf(x)在区间D上是增函数还是减函数(2)比值的大小与函数值增长的快慢有什么关系?