1、人教版高中数学必修1课后习题答案(第一章集合与函数概念)人教A版 习题1.2(第24页)练习(第32页)1答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低由此可见,并非是工人越多,生产效率就越高2解:图象如下 是递增区间,是递减区间,是递增区间,是递减区间3解:该函数在上是减函数,在上是增函数,在上是减函数,在上是增函数4证明:设,且, 因为, 即, 所以函数在上是减函数.5最小值练习(第36页)1解:(1)对于函数,其定义域为,因为对定义域内每一个都有,所以函数为偶函数;(2)对于函数,其定
2、义域为,因为对定义域内每一个都有,所以函数为奇函数;(3)对于函数,其定义域为,因为对定义域内每一个都有,所以函数为奇函数;(4)对于函数,其定义域为,因为对定义域内每一个都有,所以函数为偶函数.2解:是偶函数,其图象是关于轴对称的; 是奇函数,其图象是关于原点对称的习题1.3(第39页)1解:(1) 函数在上递减;函数在上递增; (2) 函数在上递增;函数在上递减.2证明:(1)设,而, 由,得, 即,所以函数在上是减函数;(2)设,而, 由,得, 即,所以函数在上是增函数.3解:当时,一次函数在上是增函数; 当时,一次函数在上是减函数, 令,设, 而, 当时,即, 得一次函数在上是增函数;
3、当时,即, 得一次函数在上是减函数.4解:自服药那一刻起,心率关于时间的一个可能的图象为5解:对于函数, 当时,(元), 即每辆车的月租金为元时,租赁公司最大月收益为元6解:当时,而当时, 即,而由已知函数是奇函数,得, 得,即, 所以函数的解析式为.B组1解:(1)二次函数的对称轴为, 则函数的单调区间为, 且函数在上为减函数,在上为增函数, 函数的单调区间为, 且函数在上为增函数; (2)当时, 因为函数在上为增函数,所以2解:由矩形的宽为,得矩形的长为,设矩形的面积为, 则, 当时,即宽才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是3判断在上是增函数,证明如下: 设,则, 因为函数在上是减函数,得, 又因为函数是偶函数,得, 所以在上是增函数复习参考题(第44页)