1、第二章 整式的加减课题:2.1单项式 1.列代数式(1)若边长为a的正方体的表面积为_,体积为 ;(2)铅笔的单价是x元,圆珠笔的单价是铅笔的2.5倍,圆珠笔的单价是 元;(3) 一辆汽车的速度是v千米/小时,行驶t小时所走的路程是_千米;(4) 设n是一个数,则它的相反数是_4.请学生观察所列代数式包含哪些运算,有何共同运算特征。(由小组讨论后,经小组推荐人员回答)1单项式:通过上述特征的描述,从而概括单项式的概念,:单项式:即由_与_的乘积组成的代数式称为单项式。补充: 单独_或_也是单项式,如a,5。2练习:判断下列各代数式哪些是单项式?(1); (2)abc; (3)b2; (4)5a
2、b2; (5)y+x; (6)xy2; (7)5。解:是单项式的有(填序号):_3单项式系数和次数:四个单项式a2h,2r,abc,m中,请说出它们的数字因数和字母因数分别是什么? 单项式a2h2rabcm数字因数字母因数4.一个单项式中,单项式中的数字因数称为这个单项式的_一个单项式中,_的指数的和叫做这个单项式的次数2.判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数和次数。x1; ; r2; a2b。3.下面各题的判断是否正确?7xy2的系数是7;( ) x2y3与x3没有系数;( )ab3c2的次数是082;( ) a3的系数是1;( ) 32x2y3的次数是7;
3、( ) r2h的系数是。( )四:盘点提升五:达标检测: 1、 ,x1, 2, 0.72xy,各式中单项式的个数是( ) A. 2个 B.3个 C.4个 D.5个2、单项式x2yz2的系数、次数分别是( )A. 0,2 B. 0, 4 . C. 1,5 D.1,3.说出下列单项式的系数和次数 (1) 20m, (2)3105xy4.写出一个单项式,使它的系数是2,次数是3,写出一个单项式,使它的系数是-3,次数是4课题:2.1 多项式二、预习热身1下列说法或书写是否正确: 1x -1x a3 a2 b的系数为1,次数为0 的系数为2,次数为2 2列代数式:(1)长方形的长与宽分别为a、b,则长
4、方形的周长是 ;(2)某班有男生x人,女生21人,则这个班共有学生 人;(3)一个数比数x的2倍小3,则这个数为_;(4)鸡兔同笼,鸡a只,兔b只,则共有头 个,脚 只。1多项式:上面这些代数式都是由几个单项式相加而成的。像这样,_的和叫做多项式。在多项式中,每个单项式叫做多项式的_。其中,不含字母的项,叫做_。例如,多项式有_项,它们是_。其中常数项是_。一个多项式含有几项,就叫几项式。多项式里_,叫做这个多项式的次数。例如,多项式是一个_次_项式。问题: (1)多项式的次数是所有项的次数之和吗?(2)多项式的每一项都包括它前面的符号吗?注:_与_统称整式。活动2五达标检测: 1.下列说法中
5、,正确的是( ) 2.下列关于23的次数说法正确的是( )A. 2次 B. 3次 C. 0次 D. 无法确定3.a2bab1是 次 项式,其中三次项系数是 ,二次项为 ,常数项为 ,写出所有的项 。4.如果为四次单项式,则m=_;课题:2.2 同类项.合并同类项二预习热身1运用有理数的运算律计算:(1)1002+2522=_,(2)100(-2)+252(-2)=_,(3)100t+252t=_,2.请根据上面得到结论的方法探究下面各式的结果:(1)100t252t=( )t(2)3x2 2 x2 = ( ) x2(3)3ab2 4 ab2 = ( ) ab2 三活动探究活动1:同类项的定义:
6、1.观察:3x2 和 2 x2 ; 3ab2 与 4 ab2 在结构上有哪些相同点和不同点?2.归纳:_叫做同类项_也是同类项。如3和-5是同类项活动2:1、判断下列说法是否正确,正确地在括号内打“”,错误的打“”。(1)3x与3mx是同类项。 ( ) (2)2ab与5ab是同类项。 ( )(3)3x2y与yx2是同类项。 ( ) (4)5ab2与2ab2c是同类项。 ( )(5)23与32是同类项。 ( )2、下列各组式子中,是同类项的是( )A、与 B、与 C、与 D、与3、在下列各组式子中,不是同类项的一组是( )A、 2 ,5 B、 0.5xy2, 3x2y C、 3t,200t D、
7、 ab2,b2 a4、已知xmy2与5ynx3是同类项,则m= ,n= 。5、指出下列多项式中的同类项:(1)3x2y13y2x5; (2)3x2y2xy2xy2yx2;五、达标检测:1、若和是同类项,则m=_,n=_。2、若把(st)、(st)分别看作一个整体,指出下面式子中的同类项。(1)(st)(st)(st)(st); (2)2(st)3(st)25(st)8(st)2(st)。3、观察下列一串单项式的特点: , , , , ,(1)按此规律写出第6个单项式.(2)试猜想第n个单项式为多少?它的系数和次数分别是多少?课题:2.2合并同类项二:预习热身:1下列各组式子中是同类项的是( )
8、 A-2a与a2 B2a2b与3ab2 C5ab2c与-b2ac D-ab2和4ab2c三活动探究活动1:1.因为多项式中的字母表示的是数,所以我们也可以运用交换律、结合律、分配律把多项式中的同类项进行合并例如,4x2+2x+7+3x-8x2-2 (找出多项式中的同类项)= (交换律)= (结合律)= (分配律)=把多项式中的同类项合并成一项,叫做合并同类项 3. 合并同类项后,所得项的系数、字母以及字母的指数与合并前各同类项的系数、字母及字母的指数有什么联系?(1)合并同类项法则:在合并同类项时,把同类项的系数相加,字母和字母的指数保持不变。 (2) 若两个同类项的系数互为相反数,则两项的和等于零,如-3ab2+3ab2=(-3+3)ab2=0ab2=0。 多项式中只有同类项才能合并,不是同类项不能合并。 例1合并下列各式的同类项: (1)xy2-xy2; (2)-3x2y+2x2y+3xy2-2xy2; (3)4a2+3b2+2ab-4a2-4b2解:例2(1)求多项式2x2-5x+x2 +4x-3x2 - 2的值,其中x=。 (2)求多项式3a+abc-c2-3a+c2的值,其中a=-,b=2,c=-3。 五:达标检测 1.求多项式3x24x2x2xx23x1的值,其中x=3。 2求多项式a2b-6ab-3a2b+5ab+2a2b的值,其中a=0.1,b=0.01;8