收藏 分销(赏)

全等三角形(历年中考难题).doc

上传人:仙人****88 文档编号:5494464 上传时间:2024-11-11 格式:DOC 页数:9 大小:505.01KB
下载 相关 举报
全等三角形(历年中考难题).doc_第1页
第1页 / 共9页
全等三角形(历年中考难题).doc_第2页
第2页 / 共9页
点击查看更多>>
资源描述
全等三角形 3. (2011浙江衢州,1,3分)如图,平分于点,点是射线上的一个动点,若,则的最小值为( ) A.1 B.2 C.3 D. 4 (第6题) 【答案】B 1. (2011江西,16,3分)如图所示,两块完全相同的含30°角的直角三角形叠放在一起,且∠DAB=30°。有以下四个结论:①AF⊥BC ;②△ADG≌△ACF; ③O为BC的中点; ④AG:DE=:4,其中正确结论的序号是 .(错填得0分,少填酌情给分) 【答案】①②③ 10.(2011四川内江,18,9分)如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连结BE、EC. 试猜想线段BE和EC的数量及位置关系,并证明你的猜想. A B C D E 【答案】BE=EC,BE⊥EC ∵AC=2AB,点D是AC的中点 ∴AB=AD=CD ∵∠EAD=∠EDA=45° ∴∠EAB=∠EDC=135° ∵EA=ED ∴△EAB≌△EDC ∴∠AEB=∠DEC,EB=EC ∴∠BEC=∠AED=90° ∴BE=EC,BE⊥EC 16.(2010青海西宁)八(1)班同学上数学活动课,利用角尺平分一个角(如图).设计了如下方案: (Ⅰ)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线. (Ⅱ)∠AOB是一个任意角,在边OA、OB上分别取OM=ON,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线. (1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由. (2)在方案(Ⅰ)PM=PN的情况下,继续移动角尺,同时使PM⊥OA,PN⊥OB.此方案是否可行?请说明理由. 【答案】解:(1)方案(Ⅰ)不可行.缺少证明三角形全等的条件. ……………………………2分 (2)方案(Ⅱ)可行. ……………………………3分 证明:在△OPM和△OPN中 ∴△OPM≌△OPN(SSS) ∴∠AOP=∠BOP(全等三角形对应角相等) ……………………………5分 (3)当∠AOB是直角时,此方案可行. ……………………………6分 ∵四边形内角和为360°,又若PM⊥OA,PN⊥OB, ∠OMP=∠ONP=90°, ∠MPN=90°, ∴∠AOB=90° ∵若PM⊥OA,PN⊥OB, 且PM=PN ∴OP为∠AOB的平分线.(到角两边距离相等的点在这个角的角平分线上) 当∠AOB不为直角时,此方案不可行. …………8分 23.(2010湖南娄底)如图10,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE、BE,BE⊥AE,延长AE交BC的延长线于点F. 求证:(1)FC=AD; (2)AB=BC+AD 【答案】解:(1)因为E是CD的中点,所以DE=CE.因为AB//CD,所以∠ADE=∠FCE,∠DAE=∠CFE.所以△ADE≌△FCE.所以FC=AD.(2)因为△ADE≌△FCE,所以AE=FE.又因为BE⊥AE,所以BE是线段AF的垂直平分线,所以AB=FB.因为FB=BC+FC=BC+AD.所以AB==BC+AD. 17.(2010江苏扬州)电子跳蚤游戏盘是如图所示的△ABC,AB=6,AC=7,BC=8.如果跳蚤开始时在BC边的P0处,BP0=2.跳蚤第一步从P0跳到AC边的P1(第一次落点)处,且CP1=CP0;第二步从P1跳到AB边的P2(第一次落点)处,且AP2=AP1;第三步从P2跳到BC边的P3(第三次落点)处,且BP3=BP2;……;跳蚤按上述规则一致跳下去,第n次落点为Pn(n为正整数),则点P2007与P2010之间的距离为( ) A.1 B.2 C.3 D.4 A B C P0 P3 P2 P1 第8题 【答案】C 1.(2010安徽蚌埠)在中,分别是上的点,, 交于点,若,则四边形的面积为________。 【答案】 2.(2010安徽蚌埠)三角形纸片内有100个点,连同三角形的顶点共103个点,其中任意三点都不共线。现以这些点为顶点作三角形,并把纸片剪成小三角形,则这样的三角形的个数为__________。 【答案】201 3.(2009年济宁市)观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有 个 . 9、(2009临沂)数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.,且EF交正方形外角的平行线CF于点F,求证:AE=EF. 经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证,所以. 在此基础上,同学们作了进一步的研究: (1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. A D F C G E B 图1 A D F C G E B 图2 A D F C G E B 图3 30、(2009年牡丹江)已知中,为边的中点, 绕点旋转,它的两边分别交、(或它们的延长线)于、 当绕点旋转到于时(如图1),易证 当绕点旋转到不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,、、又有怎样的数量关系?请写出你的猜想,不需证明. A E C F B D 图1 图3 A D F E C B A D B C E 图2 F 3.(2008山东泰安)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,在同一条直线上,连结. 图1 图2 D C E A B (第22题) (1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:. C E B A F D 37、(学完勾股定理后可做) (2009年重庆)如图,在等腰中,,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持.连接DE、DF、EF.在此运动变化的过程中,下列结论: ①是等腰直角三角形; ②四边形CDFE不可能为正方形, ③DE长度的最小值为4; ④四边形CDFE的面积保持不变; ⑤△CDE面积的最大值为8. 其中正确的结论是( ) A.①②③ B.①④⑤ C.①③④ D.③④⑤ 3、在等边的两边AB、AC所在直线上分别有两点M、N,D为外一点,且,,BD=DC. 探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及的周长Q与等边的周长L的关系. 图1 图2 图3 (I)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是 ; 此时 ; (II)如图2,点M、N边AB、AC上,且当DMDN时,猜想(I)问的两个结论还成立吗?写出你的猜想并加以证明; (III) 如图3,当M、N分别在边AB、CA的延长线上时, 若AN=,则Q= (用、L表示). 1、已知四边形中,,,,,,绕点旋转,它的两边分别交(或它们的延长线)于. 当绕点旋转到时(如图1),易证. 当绕点旋转到时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段,又有怎样的数量关系?请写出你的猜想,不需证明. (图1) (图2) (图3) 例1 正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数. 1、如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。请你参考这个作全等三角形的方法,解答下列问题: (1)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F。请你判断并写出FE与FD之间的数量关系; (第23题图) O P A M N E B C D F A C E F B D 图① 图② 图③ (2)如图③,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。 1、如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O,求证:OE=OD 2、如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F. (1)说明BE=CF的理由;(2)如果AB=,AC=,求AE、BE的长. 1、如图,中,AB=2AC,AD平分,且AD=BD,求证:CD⊥AC
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服